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Foreword 

This report compares the current enlisted job classification algorithm, Classification 
and Assignment within PRIDE (CLASP) instituted in 1981, with a proposed replacement 
algorithm, the Rating Identification Engine (RIDE). RIDE was developed over the 
course of several years, beginning with funding from the Office of Naval Research (Code 
34, PE 0603236N), augmented by funding from Commander Navy Recruiting 
Command to accelerate its development. The motivation to build a replacement for 
CLASP was two-fold. First, components of CLASP are not well documented and it 
executes off an expensive mainframe computer system. Second, CLASP has a number of 
“hard coded” components that are inflexible and difficult to maintain. In contrast, RIDE 
is web-based and flexible. The flexibility to add new classification rules, filters, and tests 
was seen as an important component of our research program to overhaul and improve 
the Navy’s enlisted selection and classification process.  

RIDE substantially met the design requirements, it has an easy to use interface, can 
be reconfigured rapidly and easily, and most importantly, new tests or classification 
tools can be easily integrated. However, RIDE was under an accelerated development 
cycle to meet deadlines to coincide with a planned overhaul of the Navy’s recruiting 
management system (of which CLASP was one component). As a result, RIDE was not 
as thoroughly evaluated against CLASP as would otherwise have been done. The current 
report provides a detailed evaluation of both CLASP and RIDE and compares them in 
terms of their embedded philosophies, functionality, maintenance, and efficacy. In the 
end, it is clear that the continued use of CLASP is indefensible for a number of reasons. 
Nevertheless, there are several concerns with RIDE that should be remedied and a plan 
is needed to refresh its parameters to maintain its integrity across time. 

This specific work reported here was supported by the Navy Personnel Research, 
Studies, and Technology department (Ms. Janet Held) through the U.S. Research Office 
of Scientific Services Program administered by Battelle (Delivery Order 296, Contract 
No. DAAD19-02-D-0001). 

 
 
 

David L. Alderton, Ph.D. 
Director 
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Introduction 

Across the United States, Military Entrance Processing Stations (MEPS) process 
approximately 51,000 applicants for enlistment into the active U.S. Navy each year. Of 
these, upwards of 39,000 are selected for enlistment (Kaemmerer, G., personal 
communication, September 14, 2006). Each of the selected applicants must be classified 
into a Navy rating (i.e., job) that matches the individual's abilities and is needed by the 
Service. To accomplish this, a job-matching algorithm is employed. The current Fortran-
based algorithm was originally developed in the late 1970s and put into wide-scale Navy 
use in 1981. This paper compares and contrasts the existing classification software with 
a newly designed classification algorithm.  

Rating Identification Engine (RIDE)  

The Personalized Recruiting for Immediate and Delayed Entry (PRIDE) system is 
the Navy's current overarching computer system for processing applicants for 
enlistment into the Navy. The Rating Identification Engine (RIDE) is an enlisted Navy 
rating job classification algorithm that is designed to replace the Classification and 
Assignment within PRIDE (CLASP) algorithm. RIDE consists of two components: (1) 
the School Pipeline Success Utility (SPSU) and (2) the Armed Forces Qualification Test 
(AFQT). The two RIDE components are designed to work in close association with each 
other as opposed to the more or less independent operation of the six CLASP 
components. 

Classification and Assignment within PRIDE (CLASP) 

Much of the material in this report is quoted directly from Kroeker and Rafacz 
(1983), which describes the five components of the original CLASP model implemented 
in 1981. Kroeker and Folchi (1984) describe the Attrition Component, which was added 
to CLASP in 1983.  

The CLASP utility model was formulated to ensure consistent application of Navy 
personnel classification policy among classifiers and from one assignment to the next. It 
is comprised of six components: School Success, Aptitude/Complexity, Navy 
Priority/Individual Preference, Minority Fill, Fraction Fill, and Attrition. Each 
component was designed to influence a composite utility calculation independently of 
the others. This design does not imply strict statistical independence; rather, a slight 
degree of correlation among the utility components is expected. The magnitude of these 
correlations has never been studied. 

The School Success, Aptitude/Complexity, Navy Priority/Individual Preference, and 
Attrition are often called "Fit" components, because they optimize job assignments 
based upon psychologically-based goodness-of-fit measures. The Aptitude/Difficulty, 
Priority/Preference, and Attrition components are very similar because they are based 
on policymaker judgments concerning the value to the Navy of assigning an individual 
with a given person attribute to a job with a given job attribute. The school success 
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component differs from the other "Fit" components because its utility model is based 
upon the empirical relationship between “A” School performance and Armed Services 
Vocational Aptitude Battery (ASVAB) composite scores. 

The Minority Fill and Fraction Fill components are often referred to as "Fill" 
components, because they optimize based upon the goal of achieving approximately 
equal fill rates during each recruiting period. The Minority Fill component focuses upon 
achieving appropriate balance between minority and non-minority accessions in each 
job category, while the Fraction Fill component is focused on achieving uniform quota 
fill rates across job categories. 

Using a utility function whose mathematical form is unique to it, each CLASP 
component computes the raw utility value of the prospective person to job assignment. 
Then, using mean and standard deviation parameters that describe the distribution of 
utility values in the reference population, each raw utility is standardized so that its 
mean is 50 and its standard deviation is 10. 

Both the RIDE and CLASP algorithms can be conceptualized as operating on a payoff 
matrix, which is a rectangular array of numbers representing the utilities of the various 
decision outcome combinations. Assume that there are m individuals to be assigned to 
jobs and n job openings. If individuals are indexed by i (1 ≤ i ≤ m) and jobs are indexed 
by j (1 ≤ j ≤ n), then the entry Ui,j in row i and column j of the matrix expresses the value 
to the Navy (on an arbitrary scale) of assigning the ith person to the jth job. Higher payoff 
values are more desirable than the lower ones, because Navy policy considers the 
probability of success on a job to be a monotonically increasing function of payoff value. 
The payoff matrix may be used for both comparisons across jobs and comparisons 
across individuals. Thus, 

21 ,, jiji UU >  implies that individual i is better suited for job j1 

than job j2, while  implies that individual ijiji UU ,, 21
> 1 is better suited for job j than 

individual i2. 

Ideally, the composite utility function for each job category should be a realistic 
mathematical representation of the value of assigning a given person to that job, based 
upon all identifiable factors considered relevant to the classification decision. However, 
because there are several important factors that neither RIDE nor CLASP are able to 
incorporate into the classification process, the goodness-of-fit measures they generate 
are often only a small part of the information factored into the final classification 
decision. 

2 



 

School Pipeline Success Utility (SPSU) Component of 
RIDE and School Success Component of CLASP 

Comparison 

This section evaluates the empirical relationship between composite score and “A” 
School performance, and the manner in which that relationship is incorporated into 
CLASP and RIDE, with emphasis on RIDE. In particular, we want to know how well the 
applicant's ASVAB composite score predicts “A” School performance. We also evaluate 
the “Point of Diminishing Return(s)” (PDR) concept.  

The PDR concept hypothesizes the following general relationship between composite 
score and school performance: The relationship is monotonically increasing at the lower 
end of the composite score distribution, including the region to the immediate right of 
the cut score. However, as the composite score increases toward the PDR, the rate of 
performance improvement declines and eventually flattens out at the PDR. Between the 
PDR and the high end of the score distribution, school performance either remains flat 
or declines. The leveling off or decline may be attributed to high aptitude students who 
are "over-qualified" for the curriculum/career path they are being considered for and, 
thus, may be better suited for a more challenging training curriculum and/or career 
path. 

The following procedure (Folchi, 1999) was used to model the empirical relationship 
between composite score and First Pass Pipeline Success (FPPS) in each of 70 “A” 
School samples and determine the PDR in each sample. The data consisted of students 
enrolled in the “A” School training pipelines for 70 ratings during fiscal years 1996, 
1997, and 1998. The primary ASVAB selector composite score and FPPS status were 
available for each student in each sample. The dichotomous criterion FPPS is coded as 1 
(one, success) if the student completed all courses in his “A” School pipeline without any 
course failures or setbacks, and as 0 (zero, failure) otherwise. The procedure defines a 
methodology for grouping adjacent data points into groups (hereafter called "bins") that 
are (somewhat) evenly spaced along the composite score distribution. 

Starting at the high end of the distribution, the procedure sequentially constructs 
bins by moving toward the low end in bin range increment of 5 points. The procedure 
adds all points in each increment to the bin, and continues on to the next increment, 
until a minimum bin size of 10 or more points have been added to the bin. After the bin 
membership has been determined in this manner, the bin is identified with a value on 
the composite score scale equal to the midpoint of the maximum and minimum of 
scores in all increments used to build the bin. Construction of the next bin (to the left of 
the bin just completed) starts at the point immediately to the left of the minimum score 
in the previous bin. The FPPS rate among students in the bin associates each bin with a 
point on the conditional probability of FPPS scale on the composite score. The PDR is 
found by determining all bins whose FPPS rates are within 1 percent of the bin having 
the largest FPPS rate. The PDR is the lowest composite score associated with the bins 
from this set. The bin in which the PDR is located is called the PDR bin and the bin in 
which the Cut Score is located in called the Cut Score bin. The associated points are 
named accordingly: (CS, FCS) is the Cut Score point and (PDR, FPDR ) is the PDR point. 
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SPSU Component of RIDE 

The SPSU component description is based on Folchi (1999). The description has 
been broken into 3 stages to provide a more detailed and understandable explanation. 

Stage I: Bin FPPS Rate Model 

The Stage I model is the result of the bin construction algorithm after all adjacent 
bins have been connected by line segments. Its equation is given in Appendix A. As 
shown in Figure 1, the Stage I model is piece-wise linear such that each segment 
provides a linear interpolation estimator of the conditional probability of FPPS for 
composite scores between the midpoints of adjacent bins. However, due to its 
complexity, the Stage I model was transformed into Stage II. 
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Figure 1. School Pipeline Success Utility 

Stage II: Non-standardized FPPS Prediction Model with PDR 

The Stage II model is constructed by eliminating all bins and line segments in the 
Stage I model, except the Cut Score (CS) and PDR points. The line segment between 
these 2 points estimates the conditional probability of FPPS for each composite score in 
the interval CS  X ≤  PDR. For X < CS, the SPSU is zero, as defined by the horizontal 
line starting at X = CS - 1 and extending to the left toward the minimum composite 
score. For X > PDR, Stage II model is defined by the horizontal line starting at the PDR 
point and extending to the right toward the maximum composite score. 

≤
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As shown in Figure 1, the Stage II model simplifies the Stage I model because it has 
no more than three line segments. It is considered unstandardized because it has not 
been adjusted so that meaningful comparisons across job options are possible. The 
Stage II equation is given by: 

 
 Regardless of whether : jjjj CSPDRCSPDR ≠= or  

   
,     if            0 ,, jji

II
ji CSXS <=

     Stage II Equation       .j,ijPDR
II

j,i XPDR    if       F100S
j
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where FPDR and FCS are the FPPS rates in the PDR and cut score bins, respectively, 

CSj = Cut Score for composite associated with job option j, 

PDRj = PDR for job option j, and 

Xi,j = ASVAB composite score for individual i in job option j. 

The conditional FPPS probabilities provided by the Stage II model cannot be 
meaningfully compared across different job options. If applicants were assigned to jobs 
solely on the basis of their conditional FPPS probability, then most would be assigned to 
easy schools and few would be assigned to difficult schools, since the easier schools 
generally have larger FPPS probabilities. (Ease and difficulty in this context refer to both 
the proportion of the applicant population satisfying the ASVAB selection standard and 
the proportion of student population satisfying the FPPS criterion.) For example, 
suppose an applicant has the same conditional probability of FPPS in schools A and B 
and is qualified for both schools. Assume also that A uses a more stringent ASVAB 
selection criterion than B and that A graduates a smaller proportion of students than B. 
One may argue that it would be more beneficial to send this applicant to A than to B. 
Accordingly, the SPSU Stage III model adjusts the Stage II conditional probability of 
FPPS estimate for two measures of school difficulty: (a) difficulty experienced by the 
average applicant population member in satisfying the ASVAB qualification standard, 
and (b) difficulty experienced by the average “A” School qualified student in satisfying 
the FPPS criterion.  

Another method of counteracting the tendency for school success utility scores to put 
too many applicants in easy schools is to design the remaining classification model 
components to compensate for this tendency. For example, the CLASP 
Aptitude/Difficulty component counteracts the CLASP School Success component in 
this respect. In RIDE, both the transition from Stage II to Stage III and the RIDE AFQT 
component fulfill the compensatory role. 
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The Hardness index is a measure of the difficulty that the average applicant 
population member experiences in satisfying the “A” School ASVAB qualification 
standard. It assumes values between zero and one, where zero indicates the minimum 
difficulty and one indicates maximum difficulty. The hardness index for job option j is 
defined as: 

 Let NRJO be the total number of RIDE job options. 

 Let NTj be the number of ASVAB subtests in composite for job option j. 

 Let ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤≤= NRJOj

NT
CS

MaxH
j

j
Max 1 , and 

 let ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤≤= NRJOj

NT
CS

MinH
j

j
Min 1 . The hardness factor is given by: 

  
MinMax
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NT
CS

H
−

−
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The adjustment for the difficulty experienced by the average student in satisfying the 
FPPS criterion is determined by the reciprocal of the FPPS rate at the PDR. This, of 
course, assumes that the FPPS rate at the PDR is representative of the FPPS rate of all 
students taking the course. The smaller the FPPS rate at the PDR, the larger the 
reciprocal is, and, therefore, the greater the difficulty of satisfying the FPPS criterion. 
Thus, the transition from Stage II to Stage III will produce a larger upward shift for a 
school in which it is more difficult to satisfy the FPPS criterion. The standardization 
factor is the ratio of the hardness index to the FPPS rate at the PDR. The larger the 
hardness index and the smaller the FPPS rate at the PDR, the larger the standardization 
factor. Accordingly, the Stage III model is 

 
II

ji
PDR

jIII
ji S

F
H

S
j

,, =          Stage III Equation 

 
Observe from Figure 1 that the Stage II and Stage III models are discontinuous 

between cut score minus one and the cut score, unless the FPPS rate in the cut score bin 
is zero. Thus, there can be a large difference between the SPSU value at the cut score 
and the SPSU value (zero) everywhere below the cut score. 
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Criticisms of RIDE SPSU Model 

Stage I Model, Bin Construction, and PDR Determination 

Any procedure for grouping data in this manner is arbitrary. Application of different 
grouping procedures, bin sizes, and bin range increments lead to different bin 
memberships. Different bin memberships in turn produce different empirical 
relationships between FPPS and composite score and, consequently, different PDRs and 
different SPSU models. Furthermore, there is no a priori reason to believe that any one 
combination of grouping procedure, bin size, and bin range increment is superior to any 
other. Increasing Bin Size improves the accuracy of the FPPS rate estimates in each bin. 
However, it does so by reducing the number of bins and increasing the length of the 
interval between bins. As a result, the identification of each bin with a particular 
composite score becomes more arbitrary and diffuse. In addition, although there is no a 
priori reason to believe that the PDR necessarily exists, the PDR search procedure has 
been defined in such a manner that it will always find one. 

FPPS School Performance Criterion 

Several potential problems may arise as a consequence of using FPPS. To the 
author’s knowledge, FPPS has never been studied or utilized in previous 
NPRDC/NPRST selection and classification research. It is not possible to anticipate how 
well it will perform in comparison to school performance measures used in ASVAB 
validation studies, such as final school grade (FSG). 

A tailor-made school performance measure is usually developed during the course of 
performing an ASVAB validation study. Developing such a measure is often difficult and 
time-consuming because a detailed understanding of the course and student evaluation 
process is required. However, from the author's perspective, the effort generally 
produces a criterion that does well in differentiating students from one another. The 
resulting validity coefficients seem, in general, to be larger than those derived from 
more readily available performance measures, such as those obtained from Navy 
Integrated Training Resources and Administration System (NITRAS). A corollary to this 
observation is that differences between FPPS and a tailor-made performance criterion 
may be substantial enough to produce different validation study outcomes. For example, 
the ASVAB composite that correlates the highest with FPPS in a particular “A” School 
pipeline may not be the same as the composite that correlates highest with a criterion 
that is tailor-made for the “A” School in that pipeline. 

This has important implications for RIDE. The SPSU model and parameters were 
developed using FPPS as the school performance measure and the current ASVAB 
selector composite as the student aptitude measure. However, no research has verified 
that the current ASVAB composites are still optimal in terms of their ability to predict 
FPPS in each rating. It is possible that some composite other than the current one better 
predicts FPPS. The definition of FPPS is broad enough to include any number of school 
pipeline segments, in addition to the “A” School. No research has explored the number 
of schools in the various pipelines, the nature of the courses and curricula associated 
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with the segments, or whether ASVAB aptitude measures are even relevant in terms of 
their ability to predict success in segments that have not been included in previous 
ASVAB validation studies. 

Another potential problem is that many pipelines demonstrate extreme differences 
between the proportions of successes and failures in the sample (e.g., 99% FPP success 
and 1% FPP failures). Such an extreme split may adversely affect the estimation of the 
conditional probability of FPPS, particularly in the presence of outliers in the failure sub 
sample. 

A full explanation of why an extreme split may cause problems is beyond the scope of 
this paper. However, a very brief explanation is as follows: FPPS, when compared to 
performance measures like FSG that have a continuous, bell-shaped distribution, has a 
shortcoming when examined from a mathematical and statistical standpoint. The 
dichotomization of a continuous performance measure necessitates the introduction of 
an additional nuisance parameter into the analysis, namely the location of the point on 
the distribution designating the boundary between the successes and failures. When this 
point is near either extreme of the distribution, then the variance of its estimate is 
increased, which in turn adversely affects the variances of the slope and intercept 
parameters in the conditional probability of success estimator (Hannan & Tate, 1965; 
Prince & Tate, 1966). 

Stage II Model 

Although the Stage II model is considerably simpler than the Stage I model, it 
wastefully discards all data except the cut score and PDR bins. In addition, the 
imposition of linear relationships may introduce bias to the estimation of the 
conditional probability of FPPS at all points of the distribution, except at the Cut Score 
and the PDR. The Stage I model, like any estimator, contains estimation error. However, 
each FPPS rate estimate used to build the Stage I model is unbiased because the 
properties of the binomial distribution ensure it. The greater the degree of non-linearity 
demonstrated by the Stage I model, the greater the bias introduced as a result of 
imposing the Stage II model on top of it. Consequently, the Stage II model is 
contaminated by both estimation error (inherited from the Stage I model) and bias 
(from imposing linear relationships that may not have existed in Stage I). 

Stage III Model 

Adjusting the Stage II model for difficulty in satisfying the FPPS criterion is a 
reasonable standardization technique. However, a broader, more stable school difficulty 
measure than FPPS rate in the PDR bin should be used. The overall FPPS rate in the 
school sample seems more reasonable. 

Bin Model Evaluation 

Both subjective and objective evaluations of the Bin models were performed. 
Subjective evaluations were performed by a committee consisting of Janet Held and 
Geoff Fedak of Navy Personnel Research, Studies, and Technology (NPRST), and the 
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author. Each committee member studied graphical displays of the 70 bin models and 
judged whether each display indicated the presence or absence of a PDR. A majority 
vote on each display indicated that a PDR was present in 25 out of the 70 models 
(35.7%). 

The objective evaluation consisted of a statistical comparison of each bin model with 
a model developed using a baseline methodology. In the author's opinion, an objective 
evaluation of the bin construction process required a baseline methodology for 
estimating the conditional probability of FPPS at a given composite score. The bin and 
the baseline methodologies were compared on the basis of the accuracy of their 
respective predictions of conditional probability of FPPS. Two logistic regression model 
prototypes, the quadratic logistic regression model (QLRM) and the linear logistic 
regression model (LLRM), were selected for the baseline role. Logistic regression is a 
standard methodology for estimating the conditional mean of a dichotomous criterion 
variable such as FPPS (Hosmer & Lemeshow, 1989). 

The testing procedure described in this section was used to (a) compare the LLRM 
and QLRM and select which model best describes the relationship between composite 
score and FPPS in each “A” School sample, (b) determine whether a PDR exists in each 
sample, and (c) compare the selected LRM (either QLRM or LLRM) with the Bin model 
and determine whether the Logistic Regression Model (LRM) or Bin model best fits the 
data. 

Inclusion of the QLRM in this study stems from the central role of the PDR concept 
in RIDE and the need to objectively test for the presence of a PDR. Thus, the choice 
between LLRM and QLRM provides an objective test for determining whether a PDR 
exists. If the test indicates that a QLRM (that also has certain characteristics described 
below) best models the relationship between composite score and FPPS, then there is 
statistical evidence that a PDR exists. On the other hand, if the test indicates that the 
LLRM best models the relationship between composite score and FPPS, then there is 
statistical evidence that a PDR does not exist. 

( )[ ]{ } 1
,0,,1

2
,,2, exp1 −

++−+= jjijjij
Q

ji XXS ααα  

is the QLRM for the conditional probability of FPPS with respect to individual i in job option j. 
αk,j is the coefficient of  (k = 0, 1, 2), and Xk

jiX , i,j is the score of individual i on the ASVAB 
composite for job option j.  

The QLRM has exactly one extreme value point, which may be either a maximum or 
a minimum. As demonstrated in Appendix B, the extreme value point is a minimum if 
α2,j > 0 and is a maximum if α2,j < 0. Two distinct QLRM sub models resulted from 
fitting the generic QLRM to the 70 “A” School samples. One (QLRM #1) is consistent 
with the assumption of a monotonic increasing relationship between composite score 
and FPPS over the interval between the cut score (CS) and the maximum observed 
composite score in the sample (CMax). Hereafter, denote this interval as (CS, CMax]. The 
second (QLRM #2) is an acceptable QLRM because it is consistent with the PDR 
concept. Hypothetical curves for QLRM #1 and QLRM #2 are illustrated in Figure 2. It 
is assumed that CS = 120 and CMax= 160 for all curves in Figure 2. 
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Figure 2. Logistic regression models. 

QLRM #1 characteristics: α2,j > 0 and so the extreme value point ХMin is a minimum. 
Also, ХMax < CS < CMax. This is shown in Figure 2, where ХMin =110, and so the model is 
monotonic increasing on [CS, CMax].  

QLRM #2 characteristics: α2,j < 0 and so the extreme value point ХMax is a maximum. 
In addition, CS < ХMax < CMax. This is illustrated in Figure 2, where XMax = 140 is a PDR, 
since the relationship between X and FPPS is monotonic increasing on [CS, ХMax] and 
monotonic decreasing (MD) on[ХMax, CMax].  

The monotonic character of the LLRM over the entire composite score range makes 
it appropriate in the context of using aptitude test scores to predict a dichotomous 
training school success measure such as FPPS.  

([{ 1
,0,,1, exp1 −+−+= jjij

L
ji XS ββ )]}  is the LLRM for the conditional probability of FPPS 

with respect to individual i in job option j. βk,j is the coefficient of  (k = 0, 1), and Хk
jiX , i,j 

is the score of individual i on the ASVAB composite for job option j. As shown in Figure 
2, there is no extreme value point associated with the LLRM, and hence it is monotonic 
over the entire composite score range. The LLRM is monotonic increasing (monotonic 
decreasing) if β1,j is positive (negative). 

The following criteria were used to choose between LLRM and QLRM: 

• With the exception of QLRM #2, the model should be monotonic increasing on 
CS, CMax. This consideration is based upon the assumption that the relationship 
between composite score and FPPS should, in general, be monotonic increasing. 
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• P-value test: We choose between LLRM and QLRM based primarily on the p-
values associated the highest degree parameter in the respective models. The 
highest degree parameter of the LLRM isβ1,j, whereas the highest degree 
parameter of the QLRM is α2,j. Comparison of their p-values indicates which 
parameter we may conclude, with the greatest degree of confidence, is unequal to 
zero, and, consequently, whether the QLRM or LLRM best fits the data. See 
Appendix A for discussion on the interpretation of p-values. 

Define β1,j as the LLRM estimate of β1,j and  as the QLRM estimate of αj,2α̂ 2,j. For the 

“A” School sample associated with job option j, we use the p-value to make a preliminary 
choice between the QLRM and LLRM by applying the following decision rules: 

If p-value ( ) < p-value (βj,2α̂ 1,j), we may conclude with greater confidence that α2,j is 

unequal to zero than we could that β1,j is unequal to zero. Thus, our preliminary choice is 
QLRM, which we finalize by performing steps 1 through 3: 

1. If the QLRM satisfies the characteristics of QLRM categories #1 or #2 and if no 
errors were detected during model fit, the model is declared as QLRM. If, in 
addition, the QLRM satisfies the characteristics of QLRM #2, then a PDR is 
declared to exist. 

2. If (1) is not satisfied, the final model choice is LLRM, provided that  > 0 and 

no error conditions were detected during parameter estimation. 
j,1̂β

3. If (2) is not satisfied, then the model is declared “No Decision,” indicating that 
neither QLRM nor LLRM provides a satisfactory fit. 

If p-value (  ) > p-value (βj,2α̂ 1,j), then our preliminary model choice is LLRM. That 

decision becomes final if β1,j > 0 and no error conditions were detected during 
parameter estimation. However, if β1,j < 0 or at least one error is detected, the model is 
declared “No Decision.” 

Once the QLRM vs. LLRM winner is selected, it is compared with the Stage II bin 
model. The (non-standardized) Stage II model, rather than the (standardized) Stage III 
model, is compared with the QLRM-LLRM winner because the basis for comparison is 
accuracy of conditional probability of FPPS prediction. 

The “expected absolute total error” (EATE) criterion was used to compare the Bin 
and LRM models. As described under Criticisms of RIDE SPSU Model, the Bin model 
construction process introduces both bias and estimation error into its estimate of 
conditional probability of FPPS. In contrast, the asymptotic unbiased property of 
maximum likelihood estimators (MLE) means that the logistic regression parameter 
estimates are unbiased in the limit as the sample size becomes large (Stuart & Ord, 
1991). (The author is not aware of any studies indicating whether, for a fixed sample 
size, the LRM parameter MLEs are still unbiased and, if not, the degree of bias present.) 
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Preliminary Bin vs. LRM comparisons were performed using 95 percent confidence 
intervals. Overall, these results indicated that the LRM had slightly narrower confidence 
interval widths than the Bin model. However, since estimator bias is not considered in 
the confidence interval calculation, a criterion was sought that would incorporate both 
bias and estimation error variance into the comparison. The EATE criterion was 
developed by assuming that ε (epsilon, the total FPPS rate estimation error due to the 
presence of both bias and FPPS rate estimation error variance) is normally distributed 
with mean equal to the bias and variance equal to the estimation error variance. 
Mathematically, EATE is the expected value of the absolute value of ε  ( E|ε | ) and is 
given by 

  EATE = E|ε | = 2 μ
σ
μμ

σ
μϕσ +⎟

⎠
⎞

⎜
⎝
⎛−Φ−⎟

⎠
⎞

⎜
⎝
⎛− 2 , where            

σ2 is estimation error variance, 

μ is the bias of the estimator, 

φ( ) is the standard normal probability density function, and 

Ф( ) is the standard normal cumulative distribution function. 

This formula is used to calculate EATE of the logit in the LRM model, and the EATE 
of the Bin model. The derivation of EATE is given in Appendix A, as are the procedural 
details of the Bin vs. LRM comparison. 

Table 1 summarizes the results of the analyses. The Bin columns indicate the mean of 
the Bin model EATEs for each rating. Each mean was computed by averaging the EATEs 
over all integer composite scores between the cut score and the CMax in that rating. The 
LRM columns indicate the mean of the LRM model EATEs for each rating, again 
computed by averaging over all composite scores between the cut score and CMax for that 
rating. When these columns were averaged over all ratings, the mean Bin EATE was 
0.050 and the mean LRM EATE was 0.030. The B/L columns indicate whether the Bin 
model or LRM model produced the smaller EATE. In this comparison, the Bin model 
produced the smaller EATE only 7 times, while the LRM produced the smaller EATE 62 
times. The Model column indicates which LRM (QLRM or LLRM) was the superior 
LRM for that rating and was matched against the Bin model in the EATE comparison. 
The appearance of (PDR) in that column indicates that the chosen QLRM satisfied the 
criteria for the existence of a PDR.1 Six of the 70 LRMs were QLRM, 55 of them were 
LLRM, and the remaining 9 were “No Decision.”2 Five of the six ratings that satisfied 
the QLRM criteria also satisfied the conditions for the existence of a PDR. These ratings 
are designated by an asterisk (*) in the Model columns.  

                                                 
1 Note: The LLRM was matched against the Bin model whenever the QLRM vs. LLRM comparison 
resulted in a “No Decision” outcome. 
2 No Bin vs. LRM comparison was performed for the PH 5Y rating because only one bin resulted when the 
bin construction procedure was performed on that sample. At least 2 bins are necessary to calculate the 
Stage I estimate. 
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Table 1 
Bins vs. LRM 

Rate  Bin  LRM  B/L Model Rate  Bin  LRM  B/L Model 
AB--GE .065 .048 L  QLRM* AC--5Y .097 .037 L  LLRM  
AD--SG .012 .010 L  LLRM  AE--SG .022 .013 L  LLRM  
AECFAE .048 .015 L  LLRM  AG--SG .100 .032 L  LLRM  
AK--SG .027 .021 L  NoDe  AM--GE .013 .008 L  LLRM  
AO--SG .061 .020 L  LLRM  AS--SG .119 .056 L  NoDe  
AT--GE .042 .017 L  LLRM  AZ--SG .020 .013 L  LLRM  
BU--5Y .085 .042 L  QLRM* CE--5Y .040 .020 L  LLRM  
CM--5Y .064 .025 L  LLRM  CTA-SG .017 .017 L  LLRM  
CTI-SG .119 .031 L  LLRM  CTM-AE .046 .024 L  LLRM  
CTO-SG .032 .033 B  QLRM* CTR-SG .053 .035 L  NoDe  
CTT-SG .015 .010 L  LLRM  DC--SG .023 .013 L  LLRM  
DK--SG .060 .035 L  NoDe  DT--GE .021 .010 L  LLRM  
EA--5Y .055 .039 L  LLRM  EM--SG .045 .022 L  LLRM  
EN--SG .060 .023 L  LLRM  EN--AT .108 .035 L  LLRM  
EO--5Y .015 .010 L  LLRM  ETS-GE .051 .019 L  LLRM  
EW--SG .036 .027 L  LLRM  EW--AE .138 .048 L  LLRM  
FT--GE .028 .024 L  LLRM  GM--SG .053 .034 L  LLRM  
GSE-GE .083 .040 L  LLRM  GSM-GE .075 .028 L  LLRM  
HM--GE .027 .008 L  LLRM  HT--GE .028 .023 L  QLRM  
IC--GE .111 .032 L  LLRM  IS--SG .043 .025 L  LLRM  
JO--5Y .058 .044 L  LLRM  LI--SG .025 .050 B  LLRM  
MM--SG .029 .014 L  LLRM  MM--NF .069 .085 B  LLRM  
MMS-SG .078 .020 L  LLRM  MN--SG .038 .029 L  NoDe  
MR--SG .040 .036 L  LLRM  MS--SG .072 .019 L  NoDe  
MSS-SG .070 .049 L  LLRM  MT--AE .036 .027 L  LLRM  
----NF .016 .022 B  LLRM  OS--SG .008 .007 L  LLRM  
PH--5Y ---- ---- --- QLRM* PN--SG .027 .020 L  LLRM  
PR--SG .011 .015 B  LLRM  QM--SG .044 .038 L  LLRM  
RM--SG .029 .012 L  LLRM  RP--SG .048 .048 B  NoDe  
SH--SG .032 .021 L  LLRM  SK--SG .028 .019 L  NoDe  
SKS-SG .101 .094 L  LLRM  SM--SG .030 .024 L  LLRM  
SS--SF .040 .016 L  LLRM  STG-GE .007 .007 L  LLRM  
STS-GE .068 .022 L  LLRM  SW--5Y .074 .042 L  NoDe  
TM--SG .065 .041 L  LLRM  UT--5Y .037 .038 B  QLRM* 
YN--SG .033 .013 L  LLRM  YNS-SG .094 .071 L  LLRM  
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School Success Component (SSC) of CLASP 

The school success utility component predicts “A” School success as a function of the 
operational ASVAB selector composite for each rating. Prior to CLASP, classifiers made 
“A” School assignments based on the cut score for each rating, without considering the 
degree to which the applicant may exceed that score. Based upon the assumption that an 
applicant's likelihood of success increases with aptitude test score, the school success 
component was designed to incorporate information about the complete range of scores, 
instead of focusing solely on whether the cut score was satisfied. For the original CLASP 
implementation in the early 1980s, Navy validation samples were obtained from Paul 
Foley of Navy Personnel Research and Development Center (NPRDC). Linear regression 
analyses were performed to develop unique school success equations for ratings in 
which validation data was available. Thus, in the original CLASP implementation, 
different selector composites were used to predict school success for different ratings. 
The original equations were typically characterized by non-integer weights and, in some 
instances, negative weights. 

In 1984, a new policy allowed only operational ASVAB selector composites to be used 
as school success equations in CLASP. Therefore, the current school success equation 
for each job option is identical to the ASVAB composite currently used for selection 
purposes. Accordingly, CLASP school success criterion measures vary from job option to 
job option. For a given job option, the school success criterion is determined by the “A” 
School performance measure used in the ASVAB validation study that recommended 
use of that particular composite. Whenever an ASVAB validation study recommends 
that the ASVAB composite(s) currently used for selection and/or the associated cut 
score(s) be replaced, NPRST immediately submits for operational CLASP 
implementation an updated school success mean and standard deviation for each job 
option associated with the rating. When an ASVAB selector composite change is 
recommended and approved, Commander, Navy Recruiting Command (CNRC) then 
changes the corresponding school success equation(s) in the operational CLASP 
implementation. Several “A” Schools select students using multiple composites and cut 
scores, either as a multiple hurdle or as an "either/or" criterion. For CLASP job options 
associated with these ratings, one composite is designated by NPRST as the CLASP 
school success equation. 

The standardized school success payoff for individual i in rating j is given by 
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where 
*
, jiS  is the standardized school success payoff associated with placing individual i in 

rating j, 

Si,j is the ASVAB composite score for individual i in rating j, 

μSS,j is the Si,j reference population mean for rating j, and 

σSS,j is the Si,j reference population standard deviation for rating j. 
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The reference population used to estimate the mean and standard deviation consists 
only of recruits who satisfy the ASVAB selector criteria for that rating, not the entire 
recruit population. Subtracting μSS,j from Si,j and dividing that difference by σSS,j in 
equation Sch_Suc adjusts each Si,j for differences across ratings in the average ability 
level required to qualify for and successfully complete “A” School. As a result, equation 
Sch_Suc transforms the Si,j into a common metric for all ratings and facilitates 
comparison across ratings for individual i. However, it is not known if conversion to this 
common metric is sufficient to completely eliminate the tendency for the easier schools 
to experience higher school success utility scores, on the average. 

CLASP Parameter Update Considerations 

The reference population means and standard deviations for each job category are 
the only School Success component parameters subject to updating. The CLASP 
parameter update software automatically generates an update for these parameters 
during the annual CLASP parameter update. In addition, NPRST possesses a software 
package to update any specified subset of the school success mean and standard 
deviation parameters when ASVAB selector composite and/or cut score changes have 
been recommended and approved. 

RIDE SPSU and CLASP SSC Summary 

The section closes with a discussion of several important considerations in building 
and maintaining the SPSU component of RIDE. Also included is a description of 
strengths and weakness of SSC and SPSU. 

CLASP SSC Weaknesses 

School success equations in the current CLASP implementation are chosen from a 
short list of approximately 12 ASVAB (unique) selector composites. This small number 
of unique composites, relative to the approximately 120–130 job options currently sold 
in CLASP, means that the same composite is used for several job options. For example, 
as of March 2003, CLASP used Verbal and Arithmetic Reasoning (VE+AR) to predict 
school success in 17 job options and Arithmetic Reasoning, Math Knowledge, 
Electronics Information, and General Science (AR+MK+EI+GS) in 30 job options. 
Hence, the SSC has a limited differential prediction capability, meaning that it cannot 
distinguish differences in school success utility between pairs of job options using the 
same equation. A partial solution may be achieved in job options that use multiple 
composites for selection, either as a multiple hurdle or as an "either/or" criterion. If 
appropriate weights could be found, additional school success equations could be 
created by taking a weighted sum of all composites appearing in the “A” School selection 
standards for these job options. The number of CLASP job options sharing the same 
composite could be reduced substantially. In addition to concerns regarding the quality 
of differential prediction, the SSC lacks the flexibility to implement anything other than 
a linear relationship between composite score and utility.   
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CLASP SSC Strengths 

The advantage of the SSC is that only Navy applicant data from PRIDE is required to 
update the CLASP parameters, including SSC mean and standard deviation parameters. 
When an ASVAB validation study recommends a selector composite and/or cut score 
change for a given rating, CLASP does not require a new prediction model. CLASP 
requires only that mean and standard deviation parameters for that rating be updated 
based upon the new composite and/or cut score. NPRST uses a simple procedure to 
estimate the new parameters and forward them for implementation. “A” School 
validation samples are not required for this purpose. 

RIDE SPSU Weaknesses 

Development and maintenance of bin and/or logistic regression models for 
predicting FPPS requires an “A” School validation sample for each rating. As is currently 
the case with CLASP, when an ASVAB validation study recommends a change to the 
operational selector composite in a given rating, a corresponding change to the SPSU 
component of RIDE will be required. However, unlike CLASP, the RIDE parameter 
update requires estimation of both a new PDR and the FPPS rate at the new PDR. 
School performance data would be required to accomplish this. In addition, it is 
anticipated that in some situations, such changes may be more difficult and time-
consuming than is currently the case with CLASP. When a selector composite change is 
recommended and approved for a given rating, it may not be advisable to immediately 
develop and implement a new FPPS prediction model for that rating using the currently 
available validation sample and the replacement (i.e., new) selector composite. This will 
be especially true if the incumbent and replacement composites will select student 
populations that are significantly different from one another. Accordingly, it may not be 
feasible to implement the new selector composite in RIDE until after sufficient students 
have been selected with the replacement composite to develop and implement a new 
prediction model. 

RIDE SPSU Strengths 

Availability of “A” School performance data will facilitate development of non-linear 
models of the relationship between composite score and school performance. It will also 
facilitate development of unique SPSU equations for more job options than is currently 
feasible in CLASP. Although previous sections raised several questions concerning the 
quality of the FPPS criterion and the quality of the Bin and LRM estimators of the 
conditional probability of FPPS, the availability of school performance data would 
facilitate further research on criterion measure alternatives to FPPS. 
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CLASP Aptitude/Difficulty and RIDE AFQT Component 
Comparison 

In ascertaining whether an applicant is suited to a particular job, the employer must 
assess the job's requirements and the applicant's abilities. The employer must decide 
whether the prospective employee has the abilities required to succeed in the job. 

During a typical employment interview, the employer judges the applicant's abilities 
using some internal scale. The internal scale may not be well defined, but allows the 
employer to evaluate and rank-order prospective employees. The employer can be more 
certain about the characteristics of the job and the type of person most likely to fill the 
job successfully. The employer's experience enables him to rank-order jobs based on the 
technical ability they require. This continuum forms a second scale. For example, an 
employer may judge that a particular applicant belongs to the upper 25 percent of 
applicants, as assessed on the internal aptitude scale. A particular job may be rated by 
the employer as belonging to the upper 25 percent of jobs on the scale of technical 
aptitude required to succeed. Having established the relative positions of both the job 
and the applicant on their respective scales, the employer may judge their 
correspondence to each other. In this case, there appears to be a match and the 
applicant will likely be offered the job. 

The Aptitude/Difficulty component of CLASP works similarly to the employer's 
evaluative techniques. This utility function involves two scales: (1) a measure of an 
applicant's overall technical aptitude, and (2) a measure of the rating's technical 
difficulty or complexity. Thus, given an applicant's technical aptitude and a rating's 
technical difficulty, the utility of that person-job match may be evaluated and compared 
with other possible person-job matchups. 

Kroeker and Rafacz (1983) provide details concerning the technical aptitude and job 
difficulty scales. The technical aptitude composite (TAC), computed as MC+AS+EI+GS, 
measures the applicant's technical aptitude for purposes of the Aptitude/Difficulty 
component. The following equation transforms the TAC so the resulting transformed 
aptitude score (TAS) is between 40 and 100, inclusive. 
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Truncate to Ai = 100 if Ci ≥ 280 and truncate to Ai = 40 if Ci ≥ 180, where Ai and Ci 
are the TAS and TAC scores for individual i, respectively. The TAS distribution must fall 
in this range because the Aptitude/Difficulty utility function described below is 
constructed such that its aptitude argument must satisfy this property. 

As indicated by equation Apt_Dif_TAS, the transformation truncates TAC scores 
that are either less than 180 or greater than 280 so that they fall at the extremes of the 
TAS distribution. Since the minimum standard score of each subtest is 20 and the 
maximum standard score is 80, the minimum TAC score is 4 x 20 = 80 and the 
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maximum is 4 x 80 = 320. Consequently, TAC scores between 80 and 180 correspond to 
a score of 40 on the TAS, while TAC scores between 280 and 320 correspond to a TAS 
score of 100. The original rationale for the truncation in equation Apt_Dif_TAS is 
unknown, but its apparent effect is to prevent the TAS distribution from being tightly 
concentrated around its mean and to spread it more uniformly over the range between 
40 and 100. 

The job difficulty scale was established using paired comparison methodology. 
(Kroeker, personal communication, 1998). Initial scale values were produced for the 
complete job set by applying the paired comparison procedure to two data sets: (1) 
experimenter judgments about the cognitive skills required by each job, and (2) 
experimenter estimates of the visual perceptual attributes required. Data were then 
collected from subject matter experts (SMEs) who were asked to compare the job 
difficulty of small groups of ratings. The SMEs ranked the difficulty of 8 to 10 jobs in 
pairs, thus contributing to a matrix from which new scale values could be derived for the 
entire job set. The scale was then modified by using an iterative procedure to revise 
psychological values (Kroeker, 1982). 

The unstandardized technical aptitude/job difficulty utility associated with assigning 
person i to job j is given by: 

Equation Apt_Dif_Util: 
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B0,0 = 30.0, B2,0 = -0.0005, B0,1 = 1.867, B2,2 = -0.00001696, B2,1 = -0.0001867 

and B0,2 = -0.01244, UA/D(A2, Dj) is the raw Aptitude/Difficulty utility of assigning 
person i to job j, Ai is the TAS score of person i, and Dj is the job difficulty of rating j. 

The following briefly explains the development of equation Apt_Dif_Util. Ward 
(1977) is an excellent source reference for this topic. The classification policymaker 
assumed that UA/D(A2, Dj) is a polynomial in two variables: applicant aptitude Ai and job 
difficulty Dj. The maximum degrees of Ai and Dj of the (bivariate) polynomial are 
determined by the number of initial conditions, as described below. Hence, it was 
originally specified as 
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There are (2+1) x (2+1) = 9 unknown coefficients (B0,0, B0,1, B0,2, B1,0, B1,1, B1,2, B2,0, 
B2,1, and B2,2) to be determined. Step 2 specifies a set of initial conditions (either on the 
utility function itself or on its partial derivatives) at critical values of A and D. For 
example, equation (Apt_Dif_Poly) was developed using a set of initial conditions similar 
to the following: 
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(1) UA/D(40,40) = 32.34 

(2) 
D

U DA

∂
∂ /  = 0 when evaluated at A = 40, D = 43.1 

(3) UA/D(40,100) = -204.65 
(4) UA/D(100,100) = 98.8 
(5) UA/D(100,40) = 39.02 

(6) 
D

U DA

∂
∂ /  = 0 when evaluated at A = D = 100 

(7) UA/D(70,40) = 37.35 
(8) UA/D(70,100) = 22.93 

(9) 
D

U DA

∂
∂ /  = 0 when evaluated at A = 70, D = 65.7 

Note the number of initial conditions equals the number of unknown coefficients. 
When the initial conditions are substituted into Apt_Dif_Poly, the result is a system of 9 
linear equations in the 9 unknown coefficients. The coefficients may be determined by 
solving the linear system. 

As described by Ward (1977), the initial conditions are based upon policymaker 
requirements regarding the desired behavior of the function at pre-specified values of A 
and D. Judicious choices in the initial condition specification will give UA/D(A,D) its 
desired appearance over the entire range of allowable values of A and D. 

As far as the author can determine, the Aptitude/Difficulty, Priority/Preference, and 
Attrition Component Utility functions were all developed as mathematical 
representations of personnel classification policy. For example, the Aptitude/Difficulty 
utility function is based upon policymaker judgments concerning the value to the Navy 
of assigning an individual with a given technical aptitude level to a job with a given level 
of technical difficulty. The A/D, P/P, and Attrition utility functions do not appear to 
either represent the outcome or results of any empirical study or to be motivated by any 
such study. The author is not aware of any research, either inside or outside the military, 
which has produced an empirically-based model describing utility as a function of a 
person attribute and a job attribute. As described below, similar procedures were used 
to determine the coefficients for the raw utility functions in the Priority/Preference and 
the Attrition components of CLASP.  

Figure 3 shows a graph of equation Apt_Dif_Util with UA/D(A,D) plotted as a 
function of Job Difficulty for fixed applicant Aptitude values A = 40, 50, 60, 80, 90, and 
99. The uppermost curve on Figure 3 represents the utility values for the highest 
technical aptitude level (99) across the entire range of job difficulty. The region at which 
the curve assumes its maximum value occurs at the upper end of the difficulty scale. 
This implies the utility function tends to assign the highest aptitude individuals to the 
most technically complex ratings. The curve's gradual downward slope from the region 
of greatest technical difficulty to the region of least technical difficulty implies that 
smaller utility values are awarded when high-aptitude individuals are assigned to low-
difficulty jobs. Although the probability of such assignments is reduced accordingly, 
they may still take place, due to the influence of the other CLASP components. The 
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lowest curve represents the utility values for the lowest technical aptitude level (40) 
across the entire range of job difficulty. Its maximum value occurs at the lowest end of 
the difficulty scale; its sharply downward slope in the direction of increasing job 
difficulty means that low-ability applicants will almost always be assigned to the least 
complex jobs. 
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Figure 3. Aptitude/Difficulty Utility. 

The middle curve indicates that applicants of average ability (65) have a reasonable 
chance to be assigned to ratings of all difficulty levels. However, given that the 
maximum of this curve occurs in the range of intermediate job difficulty, it is most likely 
they will be assigned to ratings of intermediate technical difficulty. 

Thus, for a given level of applicant aptitude, the Aptitude/Difficulty component 
awards the largest utility values to assignments providing the closest correspondence 
between the applicant's ranking on the technical aptitude score distribution and the 
job's ranking on the job difficulty distribution. In other words, the largest utility values 
are awarded when high aptitude applicants are matched up with most difficult jobs. 
Intermediate aptitude applicants are awarded the largest utility when they are matched 
with intermediate difficulty jobs, although the utility of this matchup is not as large as 
that of the high aptitude individual and high difficulty job. Low aptitude applicants are 
awarded the largest utility when they are matched with low difficulty jobs, although the 
utility of this matchup is not as large as that of the intermediate aptitude individual and 
intermediate difficulty job. Table D-1 in Appendix D shows, for each fixed A, the 
difficulty level DMax(A) that maximizes UA/D(A,D). That is, for any fixed A, DMax(A) is the 
difficulty level D such that UA/D(A, DMax(A)) > UA/D(A,D) for all D in [40,99]. As shown 
therein, both DMax(A) and UA/D(A, DMax(A)) are increasing functions of A. 
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In Figure 3, the 6 curves for the 6 aptitude levels do not intersect. Thus, for a given 
job difficulty level, the utility associated with assigning an applicant with aptitude A1 is 
greater than the utility associated with TAS score A2 if A1 > A2. Stated differently, larger 
applicant aptitude levels result in larger utility values, regardless of job difficulty level. 
As a general rule, this seems reasonable, with the possible exception of the lowest job 
difficulties. One may argue that higher applicant aptitudes should result in smaller 
utilities for the lowest job difficulties, since the assignment of high aptitude individuals 
to these jobs wastes talent that could productively be used in the technically more 
difficult jobs. Such an argument could be used in support of the AFQT component in 
RIDE. 

The standardized Aptitude/Difficulty payoff is calculated as: 
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CLASP Parameter Update Considerations 

μAD, σAD, and the job difficulty (i.e., job complexity) index parameters, Dj, for each 
rating constitute the Aptitude/Difficulty component parameters subject to updating. 
The CLASP parameter update software automatically generates updates for μAD and σAD 
during the annual CLASP parameter update. Kroeker (personal communication, 1998) 
documents the procedures and methodology he used to update the original set of job 
difficulty parameters he developed in the late 1970s or early 1980s. The author knows of 
no reason why these updated parameters could not be implemented in CLASP at this 
time. 

RIDE AFQT Utility 

The purpose of the RIDE AFQT Component is to "penalize" the applicant's utility 
scores in ratings where the AFQT score suggests the applicant is over-qualified. If the 
degree of over-qualification is large enough, both the Navy's and the applicant's 
interests are best served by placement in a rating in which the applicant’s general 
aptitude more closely matches that of other applicants assigned to the rating. This 
concept is based on the assumption that the AFQT score represents a measure of the 
applicant's overall, general aptitude, while the ASVAB selector composite score 
measures specific skills and aptitudes for the rating. 

Figure 4 demonstrates this concept. The maximum AFQT utility is achieved by 
individuals whose AFQT score is ≤ the mean AFQT score Mj of individuals assigned to 
the rating. Utility decreases from a maximum of QMax = 100 to a minimum of QMin = 0 as 
the individual's AFQT score substantially exceeds the mean AFQT score for that rating. 
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Figure 4. RIDE AFQT Utility. 

Define Qi,j as the AFQT utility associated with assigning individual i to job option j. 
Define Ai as the AFQT score of individual i, Mj as the mean of the AFQT distribution in 
job option j, and σj as the standard deviation of the AFQT distribution in job option j. In 
addition, define σj ≥ 0 as the offset from Mj that defines the maximum AFQT score for 
which Qi,j = QMax = 100. Also, define θj > Mj +δj as the minimum AFQT score for which 
Qi,j = QMin = 0. In other words, as Ai increases from 0 to 100, Mj + δj represents the 
AFQT score at which the penalty begins to take effect, while θj is the AFQT score at 
which the penalty first reaches its maximum. 
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RIDE AFQT and CLASP Aptitude/Difficulty Summary 

In summary, UA/D(A,D) is a mathematical representation of a classification policy 
that assigns each applicant to a rating whose technical difficulty, D, approximately 
corresponds with technical aptitude A. The costs (both to the Navy and the applicant) of 
a mismatch seem clear. Worker boredom and a lost opportunity to assign individuals to 
jobs that better match their skills and aptitude are the costs associated with assigning 
applicants to jobs that are too easy. Decreased productivity is the cost of assigning 
applicants to jobs for which they lack the required aptitude to perform properly. 

Comparison of Figures 3 and 4 indicates the CLASP A/D and RIDE AFQT 
components are quite different. RIDE AFQT penalizes for "over-qualification" in a given 
rating (as measured by the degree to which the applicant's AFQT score exceeds the  
M + δ point in that rating's AFQT distribution). RIDE imposes no such penalty for 
under-qualification. In contrast, CLASP A/D penalizes for "under-qualification" (as 
measured by the degree to which the applicant's technical aptitude measure is less than 
the Job Difficulty measure in that rating), but imposes no penalty for over-qualification. 
Regardless of rating, the RIDE AFQT utility function is monotonically decreasing (flat 
between the minimum AFQT score and M + δ, downward sloping between M + δ and θ, 
and then flat between θ and the maximum AFQT score). In contrast, Figure 3 shows the 
CLASP A/D function is monotonically increasing between the minimum and maximum 
values of A. As the Job Difficulty increases, UA/D(A,D) increases more rapidly between 
the minimum and maximum values of A. The CLASP policy that rewards a larger 
aptitude with a larger utility value, regardless of job difficulty level, is not present in the 
RIDE AFQT model. RIDE rewards larger aptitudes with larger utility scores only in the 
more difficult jobs. 

In summary, the RIDE AFQT and CLASP A/D components seem motivated in 
conceptually opposite directions. Two possible methods for judging and comparing 
them are: (a) evaluate them in context with the remaining model components, and (b) 
evaluate them from a policymaker's standpoint. One possible technique of 
accomplishing (a) is to apply the two algorithms to a baseline set of applicant records 
and, applicant by applicant, compare the RIDE and CLASP optimal lists. In particular, 
since RIDE requires less applicant input information, this technique could provide 
useful insights into the manner in which the SPSU and AFQT components interact to 
generate a composite RIDE utility. It may also be helpful in understanding how the 
School Success and Aptitude/Difficulty components of CLASP interact, and how the 
RIDE composite utilities compare with a composite of the School Success and 
Aptitude/Difficulty components of CLASP. Evaluation of (b) requires a policymaker to 
express opinions on questions such as: Do the "under-qualification" and "over-
qualification" concepts make sense in the Navy environment? In particular, should 
under-qualified (or over-qualified) applicants be awarded fewer utility points if their 
technical aptitude does not closely match the technical difficulty level of a given rating, 
under the premise that too low (or too high) an aptitude level makes them less likely to 
succeed in that rating? 

The 4 remaining CLASP components that do not have counter-parts in RIDE are 
discussed in the following sections. 
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Navy Priority/Individual Preference Component 

Kroeker and Rafacz (1983) provide an excellent introduction to the 
Priority/Preference component and description of the priority scale. 

The purpose of this component is to incorporate both Navy priorities and 
individual preferences when assigning recruit applicants to ratings. These two 
sets of objectives may be incompatible, particularly if both are described by 
utility functions allowed to vary independently. For example, the gain in 
utility resulting from an applicant's expression of strong preference for a 
particular rating may be offset by a loss in utility if the rating has a low Navy 
priority. 

To overcome the deficiency of a strictly additive model, an interactive utility 
function was designed. Thus, a utility value is obtained as a function of the 
Navy priority index for a particular rating in conjunction with the applicant's 
specified preference value for that rating. To address both Navy priority and 
individual preference, two scales were derived: 

Priority Scale: Navy priorities were obtained from the career reenlistment 
objectives listed by the Office of the Chief of Naval Operations. These 
priorities were augmented and modified using rating popularity and rating 
size as variables in a least squares regression analysis. The resulting priority 
scale was refined by data collected from 10 Navy personnel managers 
concerned with setting recruiting goals and “A” School priorities. In a 
procedure similar to that used to establish the job complexity scale, these 
officers compared the relative importance to the Navy of small groups of 
ratings, by pairs. As with the job complexity scale, values were then modified 
using a procedure to revise estimates of psychological scale values (Kroeker, 
1982). 

The Kroeker and Rafacz description of the individual preference scale is not 
consistent with the actual CLASP implementation. Therefore, the following alternative 
description is provided: 

An individual preference value is computed for each rating. The applicant 
classification process at the Military Entrance Processing Station (MEPS) does not allow 
enough time for the recruit to rank order all ratings s/he may potentially be assigned to. 
Therefore, preference values are not determined on the basis of individual ratings. 
However, since each rating belongs to exactly 1 of approximately 15 occupational group 
categories, preferences are determined by asking the applicant to rank order up to 5 
occupational groups in terms of preference. Each rating in the most preferred 
occupational group receives the highest possible preference value (100), each rating in 
the second ranked group receives the second highest possible preference value (90), etc. 
Thus, the preference scale can be expressed as 
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Zi,j[r] = 100 – 10(r – 1), r = 1, 2, …, np, where 

 Zi,j[r] is the individual preference value for individual i in rating j[r],  

 the index j[r] ranges over all ratings in the rth ranked occupational category, 

 r is the occupation group ranking, and 

 1 ≤ np ≤ 5 is the number of occupational groups the applicant expresses a 
preference for. 

For ratings in the remaining occupational groups r for which the applicant did not 
express a preference, Zi,j[r] is assigned the lowest possible preference value (20). Thus, 
the individual preference scale ranges between 20 and 100, with larger preference 
values associated with the applicant's most preferred ratings and smaller values 
associated with his/her least preferred ratings. 

Given the Navy priority index of a rating and the individual's preference value of the 
rating, the unstandardized Priority/Preference utility is given by Equation 
Prior_Pref_Unstd: 

( )jijPP ZWU ,,  = 90.0 + (0.001)  + (1.8) (  - 100) - (0.0000014)  (Z2
jW jiZ ,

2
jW i,j - 1

- (0.00018) 2
jW  ( Z  10  + (0.009) ( jiZ , - 10

00)2 

, - 0) 0)ji
2 , where  

( )jijPP ZWU ,,
 is the priority/preference utility associated with individual i in rating 

j, 

jW
 is the Navy priority index value for rating j, and 

jiZ ,  is the individual preference value for individual i in rating j. 

In Figure 5, Upp(Wj, Zi,j) is plotted on the vertical axis against Individual Preference 
on the horizontal axis, for priority values of 100, 80, 50, and 0. The four curves are non-
intersecting and appear in order of increasing priority level from bottom to top. Thus, 
for any fixed individual preference value, a larger priority value generates a larger 
priority/preference utility than a smaller priority value. 
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Figure 5. Priority/Preference Utility. 

In addition, the utility for each priority level is an increasing function of individual 
preference level. Thus, the utility of a person-rating match increases both as a function 
of the rating priority (for a fixed individual preference level) and as a function of the 
individual's preference for the rating (for a fixed priority level). However, since the 
curves are not parallel, utility is a non-linear function of priority and preference. 

The uppermost curve represents utility values corresponding to the highest level of 
Navy priority (100) across the entire range of individual preferences. A strong or 
moderate preference for a high priority rating yields a high utility value, since both the 
Navy's and the applicant's interests are satisfied by such an assignment. A low 
preference for a high priority rating yields a moderate level utility that expresses the 
importance of the rating to the Navy. The lowest curve represents utility values 
corresponding to the lowest Navy priority level (0) across the range of individual 
preferences. A strong preference for a low-priority rating produces a high utility because 
of the Navy's attempt to honor the applicant's preference. A moderate degree of 
preference for the rating, however, results in a relatively low utility value because the 
Navy's interests are not served by such an assignment. An expression of no preference 
for a low-priority rating results in the lowest possible utility level because neither the 
Navy's nor the applicant's interests are satisfied. 

Equation Prior_Pref_Unstd was developed by assuming that Upp(W, Z) is a 
polynomial in Navy priority W and individual preference Z. It was assumed to be a 
second degree polynomial in both W and Z, and thus it has 9 unknown coefficients: 
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The initial conditions used to estimate the coefficients were similar to the following. 
Their reasonableness can be verified by inspection of Figure 5: 

(1) UPP(100,0) = 50. 

(2) UPP(100,100) = 100. 

(3) 
Z

U PP

∂
∂

 = 0 when evaluated at Z = 100, W = 100. 

(4) UPP(0,100) = 90. 

(5) UPP(0,0) = 0. 

(6) 
Z

U PP

∂
∂

 = 0 when evaluated at Z = 0, W = 0. 

(7) UPP(80,100) = 96.4 

(8) UPP(80,0) = 32.  

(9) 2

2

Z
U

∂
∂

 = 0 when evaluated at W = 80. 

Condition (9) states that U(80, Z) is a linear function of Z, and so its second partial 
derivative with respect to Z should equal zero when evaluated at W = 80. The 
standardized Priority/Preference payoff is obtained from the equation: 
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1050,*  , where 

( )ijPP ZWU ,*  is the standardized priority/preference payoff associated with 

individual i and rating j, 

( )ijPP ZWU ,  is the unstandardized priority/preference utility for individual i and 

rating j, and  

PPPP σμ  and  are the mean and standard deviation, respectively, of ( )ijPP ZWU ,  

scores in the reference population. 

CLASP Parameter Update Considerations 

The Navy priority indices, μpp, and σpp for each rating are the three 
Priority/Preference component parameters that require updates. The CLASP parameter 
update software automatically generates updates for μpp and σpp during the annual 
CLASP parameter update. However, no known documentation describing procedures, 
methodology, or software for updating the Navy priority indices exists, other than the 
summary description given in Kroeker and Rafacz and repeated above. The priority 
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indices were never updated during the author’s association with CLASP between 1980 
and 1999. In the absence of detailed information to supplement the summary 
description, it is not feasible to perform future Navy priority index updates. 

Minority-Fill Component 

Prior to CLASP, minority group members were assigned in disproportionately large 
numbers to a few ratings and in small numbers to many others. The minority-fill 
component was designed to provide a uniform assignment of minority group members 
for each rating. A uniform rate of non-minority assignments is also implied. The goal 
was for the proportion of minority group members in any rating to always equal the 
previously specified minority proportion goal for the rating.  

Kroeker's methodology for determining minority proportion goals during his tenure 
on the CLASP project is largely undocumented. However, each goal was apparently 
constructed to compensate for historical minority fill trends. If historical minority fill 
rates for a given rating were less than historical minority fill rates across all ratings (e.g., 
Navy-wide minority fill rates), then a minority fill goal larger than the historical average 
was specified. Conversely, if the historical fill rate for a given rating was greater than the 
average historical rate across all ratings, then a minority fill goal smaller than the 
historical average was specified. Beginning with the 2001 CLASP parameter update, 
NPRST began using a common (Navy-wide) minority goal for all ratings. 

Differences between the actual and desired minority group proportions at any given 
time in the reservation cycle indicate the current status of the uniform fill-rate objective 
function. The function compensates for current conditions by (1) adding utility points 
for minority group members and subtracting utility points for non-minority group 
members when the current proportion of minority group members is less than the 
minority goal, and (2) subtracting utility points for minority group members and adding 
utility points for non-minority group members when the current proportion of minority 
group members is greater than the minority goal. The equation defining the feedback 
function is given by 

Mi,j = (Gj – Fj,t)IM/NM, where: 

Mi,j is the minority fill difference associated with assigning individual i to rating j at 
time t, 

Gj is the desired minority-fill goal for rating j, 

Fj,t is the actual minority fill proportion for rating j at time t (i.e., the ratio of the 
number of minority accessions in rating j to the total number of accessions in 
rating j), and 

IM/NM is a variable whose value is 1 if the individual being classified at time t is a 
minority group member and is -1 if the individual is a non-minority group 
member. 
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The standardized minority-fill payoff is computed according to the equation below. 
The quantity of utility points added or subtracted is proportional to the difference 
between the actual and desired fill proportions: 
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),,( tjiU MF  is the standardized minority fill payoff for individual i being classified at 
time t with respect to rating j, 

jiM ,  is defined in the previous equation, and 

MFσ  is the standard deviation of  differences in the reference population. jiM ,

The above equation represents the minority fill payoff function used in the CLASP 
simulation model and the operational CLASP model. Note that there is a difference in 
the denominators of this equation and the corresponding equation in Kroeker and 
Rafacz (1983); the reason for this difference is unknown. 

Minority Fill Parameter Update Considerations 

The only Minority Fill component parameter subject to updating is σMF. The CLASP 
parameter update software automatically generates an update for σMF during the annual 
CLASP parameter update. 

Fraction Fill Component 

Prior to CLASP, the end of each recruiting month was typically marked by a flurry of 
recruiting activity aimed at filling a substantial number of positions in certain ratings. 
From a managerial perspective, a procedure resulting in a uniform rate of assignment 
across all ratings is highly desirable. The fraction fill component was designed to 
compare the proportion of applicants assigned to a particular rating with the average 
proportion of applicants assigned to all ratings at the time. If the fill proportion for the 
rating in question is less than the average fill proportion, additional utility points are 
awarded to influence the applicant to select the rating. If selected, the rating fill 
proportion moves closer to average fill rate. Similarly, utility points are subtracted when 
the proportion of the recruiting goal that has been filled in a given rating exceeds the 
average fill proportion. If the applicant selects a different rating, the resulting average 
fill rate increases slightly, thereby moving closer to the rating fill proportion. The 
operational part of the fraction-fill utility function is given by: 

Tj,t = Bt – Fj,t, where  

Tj,t is the difference in proportions for rating j when individual i is classified at time 
t, 

Bt is the average fill proportion across all ratings at time t, and 
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Fj,t is the proportion of applicants that have been assigned to openings with rating j 
up to time t. 

The standardized fraction fill payoff is calculated as: 
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Fraction Fill Parameter Update Considerations 

The only Fraction Fill component parameter subject to updating is σFF. The CLASP 
parameter update software automatically generates an update for σFF during the annual 
CLASP parameter update. 

Attrition Component 

One apparent motive for adding the Attrition Component to the CLASP model was to 
incorporate additional non-ASVAB information into the classification process. The 
"Attrition" concept has a broader definition in context of the Attrition Component than 
it does in the context of the School Success component. In School Success, attrition is 
defined solely in terms of “A” School attrition, while in the context of the Attrition 
Component; it is defined in terms of Navy-wide attrition. The person attribute is the 
Success Chances of Recruits Entering the Navy (SCREEN) score, which is based upon 
AFQT, education credential status, and age. Thus, the Attrition component incorporates 
non-ASVAB information about the applicant's education credential status and his/her 
age, and information concerning attrition in the rating from sources other than “A” 
School into the classification process. 

Like the Aptitude/Complexity and Navy Priority/Personnel Preference Components, 
the Attrition component uses an individual characteristic measure and a rating 
characteristic measure to evaluate utility. The Attrition Component evaluates the utility 
of assigning a given individual to a given rating, based upon the probability of surviving 
the first term of enlistment and the attrition severity index (ASI) of the rating. The 
person characteristic measure is the SCREEN table (Lockman, 1977) and the rating 
characteristic measure is the ASI. The SCREEN score, which is based upon the 
individual's education credential status, AFQT score, and age, reflects the probability of 
successfully completing the first term of his enlistment. The ASI was developed using 5 
factors: retention rate, personnel replacement costs, rating size (number of personnel in 
the rating), rating requirements (need for trained personnel in the rating), and priority 
(relative importance of the rating) to the Navy. A multiplicative, multi-attribute model 
was then used to calculate the ASI from the 5 factors (Thomas, Elster, Euske, & Griffin, 
1984). 
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The following discusses the construction of the attrition component policy function 
describing the utility of assigning an individual to a rating on the basis of the 
individual's attrition risk and the attrition severity characteristics of the ratings. The 
SCREEN table is constructed so that an individual is a low (high) risk to attrite during 
the first term of his enlistment if his SCREEN score is high (low). Accordingly, for 
purposes of deriving the attrition policy function, the low attrition risk individual is 
defined as having a SCREEN of 96, while the high attrition risk individual is defined as 
having a SCREEN of 70. The ASI scale is constructed so that a rating is characterized by 
high (low) attrition severity if its ASI is large (small). Accordingly, a rating with a low 
attrition severity problem is defined as having an ASI of 10, while a rating with a high 
attrition severity problem is defined as having an ASI equal to 80. 

SCREEN rank-orders the applicant population and the ASI scale rank-orders the 
ratings, thus the assignment of a low-risk applicant (high SCREEN) to a rating with a 
large ASI is a desirable outcome and should receive high utility. In fact, the policy 
function was constructed so that this assignment received the largest possible value 
(100). Although the low-risk applicant is also a low risk to attrite from a low ASI rating, 
it is more sensible from a classification policy standpoint to assign this applicant to the 
high ASI ratings, and fill the low ASI ratings with individuals characterized by a slightly 
larger risk to attrite. Accordingly, the assignment of the low-risk applicant to the low-
risk rating received an intermediate value of 60. The assignment of a high-risk applicant 
to a low-risk rating received a value of 55, slightly less than the value of the assignment 
of the low-risk applicant to the low-risk rating. Finally, the assignment of a high-risk 
applicant to a high ASI rating results in the largest possible risk that the applicant will 
attrite. Accordingly, this undesirable outcome received the lowest possible value (0). 
Substitution of theses four functional specifications yields four linear equations in four 
unknown coefficients: C0,0, C0,1, C1,0, and C1,1. 

UAtr(S, V) = C0,0 + C1,0 (S - 70) + C0,1 (V - 80) + C1,1 (S - 70) (V - 80) , where  

UAtr(S, V) = non-standardized attrition component utility of assigning person i to 
job option j, 

S = applicant's SCREEN score, 

V = attrition severity index 

Solution of the 4 equations yields these estimates: C0,0 = 0.0, C1,0 = 3.846,  
C0,1 = -0.7857, and C1,1 = 0.0522. 

In Figure 6, the non-standardized attrition utility UAtr(S, V) is plotted on the vertical 
axis against SCREEN on the horizontal axis, for fixed ASI values of 10, 45, and 80. The 
standardized Attrition payoff is obtained from the equation: 
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( )ijAtr SVU ,*  = standardized attrition component payoff associated with individual i 

and rating j, 
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( )ijAtr SVU ,  = non-standardized attrition component payoff for individual i and 

rating j, and 

AtrAtr σμ  and are the mean and standard deviation, respectively, of ( )ijAtr SVU ,  

scores in the reference population. 
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Figure 6. Attrition Utility at constant severity values. 

CLASP Parameter Update Considerations 

The attrition severity index (ASI) parameters for each rating along with μAtr and σAtr 
constitute the attrition component parameters subject to updating. The CLASP 
parameter update software automatically generates updates for μAtr and σAtr during the 
annual CLASP parameter update. Thomas, Elster, Euske, and Griffin (1984) document 
the procedures and methodology they used to develop the original set of ASI parameters 
in the early 1980s. However, the ASI parameters have not been updated since their 1983 
implementation. In the absence of (a) detailed information to supplement the Thomas 
et al. report, (b) knowledge of and access to all relevant attrition, replacement cost, and 
demand for personnel information, and (c) software to calculate the updates, it is not 
feasible to perform future ASI parameter updates. 
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CLASP Component Weights and Composite Payoff 

As previously described, a payoff vector for each CLASP component is calculated, the 
jth entry of which is the standardized payoff of assigning a given individual to the jth 
rating. For each rating, the weighted sum of the six components represents the 
composite (overall) utility associated with assigning the individual to that rating. The 
weighted sum for each rating, hereafter called the "composite payoff" is given by: 

100       where
6

1

6

1

*
,,, == ∑∑

== k
k

k
kjikji wUwU                Composite Payoff 

where  is the composite payoff for the ith individual with respect to job option j, jiU ,

*
,, kjiU  is the standardized component k payoff for the ith individual with respect to 

job option j, and wk is the weight associated with component k. 

The component weights were determined by Navy classification policy. Each weight 
expresses, in some sense, the policymaker's desired "contribution" of each component to 
the composite. In practice, however, "contribution" is difficult to define mathematically. 
Correlations among the 6 components make it difficult to state an exact relationship 
between the component weight and the proportion of variance that the component 
contributes to the composite payoff. However, standardization of the composite payoffs 
allows CLASP to partially control each component's contribution to the composite 
variance. As a result, each component weight provides a reasonable approximation to 
the policymaker's desired contribution of each component. 

As described by Kroeker and Rafacz (1983), the component weights were derived 
according to the following criteria: The raw utility scores for the school success and 
aptitude/complexity components were examined. It was observed that the variance of 
the aptitude/complexity scores was affected by a number of extreme values. For the 
center of the scale to function effectively in discriminating between persons, it was 
decided that the variance of the weighted aptitude/complexity component should be 
allowed to assume a larger value than that of the weighted school success component, 
but by no more than a ratio of 3:2. Respective weights of 26 and 35 for the school 
success and aptitude/complexity components satisfied this criterion. The second 
criterion stipulated that the priority/preference component should carry approximately 
the same weight (14) as the combined minority and fraction file component weights (15). 
The minority-fill component was given a slightly larger weight than the fraction-fill 
component, resulting in weights of 8 and 7 respectively. The attrition component weight 
(10) was assigned according to the requirement that it not exceed the individual weights 
of the school success, aptitude/difficulty, and priority/preference components. 
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Table 2 
Component weights 

Component Weight 
School Success   26 
Aptitude/Complexity 35  
Priority/Preference 14  
Minority-Fill  8 
Fraction-Fill  7 
Attrition      10 

CLASP Decision Indices and Optimality Indicators 

This section describes computation of applicants’ decision index (DI) and optimality 
indicator (OI) distributions from their composite payoff vector. CLASP computes the 
decision index for each rating as the difference between the composite payoff and the 
corresponding decision index mean: 

jjiji UU −=Δ ,,                         Decision_Index 

where Δi,j is the DI for the ith individual with respect to job option j,  

Ui,j is the composite payoff for the ith individual with respect to job option j, and  

jU is the DIM for job option j. 

As previously described, CLASP attempts to force the classifier and applicant to 
select a job option close to the top of the optimal list and makes it more difficult to select 
an option near the bottom. However, the joint distribution of the vector of composite 
utility functions (across all job options) may be such that certain job options make 
infrequent appearances near the top of the optimal list and, consequently, classifiers 
cannot access them frequently enough to satisfy recruiting goals. Such a scenario may 
occur, for instance, when the quota is large and the expected value of the composite 
utility function for that job option is small, relative to the other job options. To 
compensate, a decision index mean (DIM) for each job option is subtracted from the 
applicant's composite utility score for than job. Each DIM is the mean of the composite 
payoff distribution for that job option with respect to the applicant population (Ward, 
1958). For each job, the expected value of the difference between the composite utility 
and the DIM is zero. This adjustment insures that, over the long run, each job option is 
as likely to appear near the top of the optimal list as it is to appear near the bottom. 
Analysis of historical CLASP transaction data has demonstrated that this adjustment is 
usually adequate to insure that sufficient CLASP presentations are generated to allow 
classifiers to cover the quota for each job. 

The decision indices are transformed onto a scale ranging from 0 to 100 for 
presentation to the classifier and applicant. This is accomplished in two stages. Stage 1 
transforms the individual's decision index distribution onto a first-stage OI scale having 
a mean of 50 and standard deviation of 20. CLASP performs this transformation using a 
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weighted mean and standard deviation of the individual's DI distribution, where each 
weight is the current number of available openings (i.e., quota minus reservations-to-
date) for the rating and ship month. (Note: Equation [16] in Kroeker and Rafacz [1984] 
is not consistent with the Stage 1 transformation performed in CLASP. The operational 
CLASP implementation includes a [weighted] mean, while equation [16) does not.) The 
Stage 1 OI list is then sorted in descending order. OIs on the sorted list are then 
translated and truncated to generate the Stage 2 list. The combined translation and 
truncation operations give the highest-rated rating on the Stage 2 scale an OI of 100 and 
insure that none of the OIs at the bottom of the list are less than zero. Equation (17) of 
Kroeker and Rafacz (1984) describes the translation. After translation, each negative OI 
on the list is set equal to zero. 

RIDE Composite Payoff 

The RIDE composite utility for individual i and job option j is 

jiAFQT
III

jiSPSUji QWSWC ,,, +=  

where WSPSU = WAFQT = 1/2 are the respective SPSU and AFQT component weights,  

Ci,j is the composite RIDE utility for individual i and job option j, and  

 ,
III

jiS and Qi,j are the SPSU (Stage III) and AFQT utility scores for individual i and 

job option j. 

Discussion 

This section discusses certain issues raised during the course of the CLASP-RIDE 
comparison that may be relevant to classification policymakers. These issues include (1) 
standardization of RIDE components, (2) incorporation of factors into the classification 
decision that are excluded from the CLASP and RIDE algorithms, including non-
psychological/psychometric variables, and certain dynamic and time-critical factors, (3) 
the PDR concept and parameterization of RIDE, and (4) discussion of Bin model vs. 
LRM results. 

CLASP standardizes each of its 6 components so that each has a mean of 50 and 
standard deviation of 10. As previously described, CLASP policymakers apparently felt it 
was important to apply appropriate nominal weights to each component and 
standardize the component score distributions in such a manner that the effective 
component weights closely approximate the nominal weights. If classification 
policymakers are also concerned about consistency between the nominal and effective 
weights of the SPSU and AFQT components, they should recognize that the nominal 
weights for the SPSU and AFQT components (currently 50% for each) are probably not 
the same as the effective weights. The actual weight of each RIDE component is 
determined by the product of the nominal weight and the standard deviation of the 
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component. Hence, the component with the largest standard deviation has the largest 
effective weight. If classification policymakers wish to specify the actual weight of each 
component, each component must be standardized (by dividing by its standard 
deviation) before calculation of the RIDE composite payoff.  

In the current CLASP implementation, classifiers must attempt to sell each applicant 
an option from the Top 15 prior to viewing the CLASP optimal list. However, before 
introduction of the Top 15 feature, the CLASP optimal list presentation strategy 
indicates there was considerable emphasis on placing each applicant into an "optimal" 
job assignment. This emphasis was manifested in the manner in which the optimality 
output was used in the classification interview, particularly in the optimal list 
presentation strategy and the classifier's role in selling an option on the list. This 
strategy forced the classifier and applicant to view the CLASP optimal list in groups of 5, 
10, or 15 job options at a time, depending upon the applicant's projected enlistment 
date. The first group of options consisted of those jobs with the highest optimality 
scores. In theory, the classifier's role was to convince the applicant to buy an option on 
this list because they were considered the best possible matches. If the classifier could 
not sell one of these options, he would try to sell an option from the job group with the 
next largest set of optimality scores. In theory, the classifier would continue working 
down the optimal list until a group containing a mutually satisfactory option was found. 
Although it was possible for classifiers to access and sell options near the bottom of the 
CLASP optimal list, it was more difficult and time consuming for them to do so. 

CLASP was developed during a period when several papers in the 
Industrial/Organizational psychology literature touted the potential benefits of 
automating empirical models describing the utility of matching applicants to jobs 
(Dunnette & Borman, 1979). An attitude prevailed that most or all factors considered 
during personnel classification decisions could and should be implemented on the 
computer. In apparent accordance with this point of view, CLASP was sold to 
Commander, Navy Recruiting Command (CNRC) under the philosophy that a 
computerized classification algorithm could rank order job options by their mutual 
benefit to both the Navy and applicant. The presentation strategy described above 
clearly promotes CLASP's definition of optimality by reinforcing the classifier to select 
from the top of the list. 

Enlisted recruit classification occurs in an environment that places a strong 
emphasis on filling quotas and meeting recruiting requirements and objectives. The 
classification algorithm must operate in a manner consistent with the attainment of 
these goals. These goals originate outside of CNRC. Some Navy ratings have large 
recruiting goals, due to large manpower requirements, while other ratings have 
comparatively small goals. Some ratings are popular and comparatively easy to sell, 
while others are less popular and more difficult to sell. Changes in recruiting goals and 
shifting of quotas among different recruiting cycles occur frequently. Changes in the 
Navy's perception of which recruiting goals are critical in nature often occur. The events 
that precipitate changing recruiting goals and changing criticality designations may be 
difficult to forecast in advance. Hence, the dynamic nature of the operational Navy 
environment means that designations of which jobs are considered critical, their relative 
degrees of criticality, and recruiting goals can change suddenly and without warning. 

36 



 

CLASP is unable to fill job quotas evenly and re-channel applicants into critical jobs 
without substantial classifier intervention. Although the purpose of the Fraction Fill 
component is to fill quotas evenly across job options, it has minimal impact on achieving 
this because it carries only 7 percent of the weight in the CLASP optimality composite. 
CLASP cannot re-channel applicants into critical jobs because it cannot differentiate 
between jobs on the basis of their criticality. Instead, its definition of optimality focuses 
on the psychological measures of goodness of fit between person and job. The inputs to 
these functions are those person and job characteristics that are relatively stable, 
permanent, and enduring in nature. These include factors such as intelligence, job-
specific aptitude, and job technical complexity. In short, it is not possible for CLASP or 
RIDE to adjust for all factors that should be included in the classification process. 
Classification algorithms such as RIDE and CLASP can optimize their assignment 
recommendations based only on the more permanent and enduring characteristics of 
person and job, in particular, the psychological/psychometric variables they currently 
use. Classifiers must override classification algorithm recommendations if they desire to 
incorporate the more dynamic and time-critical factors into the classification decision. 
Therefore, classification algorithms and their optimal list presentation strategies must 
give the classifier a convenient way to sell any job currently experiencing a critical need, 
regardless of that job's ranking on the classification algorithm's optimal list. In CLASP, 
the use of the decision index to rank-order the job options (instead of the composite 
payoff) has helped insure that all ratings are reasonably accessible to classifier and 
applicant, even when the classifier was expected to sell from the top of the optimal list. 

In contrast, RIDE does not employ the DIM concept. It rank-orders job options on 
the basis of RIDE composite utility. This may be entirely valid. RIDE is being developed 
under different user expectations than CLASP was. Unlike CLASP, RIDE is being 
implemented on modern hardware. The DIM concept may be completely unnecessary in 
RIDE if user expectations and hardware capabilities are such that RIDE can provide 
adequate accessibility to all ratings, regardless of optimality value. 

Parameterization of RIDE Model 

One attractive feature of CLASP is that “A” School student performance data is not 
required to parameterize the model. The same is not true for RIDE. Student 
performance data for each RIDE job option is required to both find the PDR and 
estimate the FPPS rates in the cut score and PDR bins. However, in the Bin Model 
Evaluation section, it was demonstrated that the PDR concept does not stand up to 
rigorous statistical testing, except in a small number of ratings. 

Given the following problems associated with the use of school performance data to 
parameterize RIDE, it is reasonable to ask whether the RIDE model concept should be 
modified to eliminate the need for school performance data from the parameter update 
process. These include: 
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• Weak empirical support for the current PDR concept 

• Inexperience and uncertainty with respect to the FPPS criterion and data sources 

• School performance data is not necessary to parameterize RIDE, except to update 
the PDRs 

• Collection of school performance data for PDR update purposes would require 
time, money, and effort far beyond that required to collect only applicant data for 
the same purpose 

• In some cases, ASVAB selector composite and/or cut score changes cannot be 
implemented immediately in RIDE, due to the inappropriateness of using an 
outdated validation sample to update a PDR parameter 

The design of the SPSU and AFQT components depends heavily on the validity of the 
PDR concept. If one considers the current PDR concept to be invalid, but still believes 
the SPSU and AFQT components to be valid mathematical models of the goodness-of-fit 
between person and job, then an alternative PDR concept is needed and an alternative 
procedure is needed to estimate the PDRs. The alternative procedure must not depend 
on a hypothesized empirical relationship between FPPS and student aptitude. In 
addition, the procedure should be constructed so that parameters can be estimated from 
Navy applicant data only. School performance data should not be required to estimate 
the parameters. 

In the author's opinion, the RIDE algorithm can be justified as a classifier decision 
process model and the PDR can be justified as an important parameter in that model. 
An estimation procedure satisfying these requirements can then be derived from the 
concept of RIDE as a classifier decision model. Suppose a classifier, without assistance 
from an automated classification algorithm such as CLASP or RIDE, must classify an 
applicant. Suppose the applicant satisfies the cut score in each option being considered. 
Suppose the classifier knows (a) the applicant's composite and AFQT scores, (b) cut 
scores for all composites, and (c) all composite score distributions relative to the 
applicant population. A simple mathematical model can be developed to classify the 
applicant based on the given information. The model is based on the assumption that 
the classifier uses reference points on the composite and AFQT score distributions as 
rules-of-thumb for determining which job option the applicant is best suited for. 

In this model, the classifier uses one such reference point in the same manner as a 
PDR, that is, to designate a decision cut-off point which he may use to determine 
whether his applicant is marginally qualified, maximally qualified, or over-qualified for 
a given job. If the composite score exceeds the PDR, then the classifier may consider the 
applicant as either over-qualified for the job under consideration (and thus a potential 
candidate for a more difficult job) or maximally qualified (and thus a solid candidate for 
the job under consideration). If the composite score is less than the PDR, then the 
classifier may consider the applicant as marginally qualified for the job and, therefore, a 
potential candidate for a less difficult job. As previously described, the AFQT component 
decides whether the applicant is over-qualified or maximally qualified. The decision 
currently depends upon where the applicant's AFQT score stands in relation to the over-
qualification point (M + Delta) on the AFQT distribution for that job option. 
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Future research is required to further analyze and fill in the details of this proposed 
modification. Unanswered issues remain concerning the size of the marginally-qualified, 
maximally-qualified, and over-qualified regions. Should they all be about the same size, 
in terms of the proportions of the applicant population residing in each region? 
Depending upon the answer, consideration should be given to modifying the AFQT 
component's current decision rule. 

As this report is being finalized, it is uncertain whether “A” School performance data 
will be available and whether its use will be feasible for input to the RIDE parameter 
update process. This report has also raised questions concerning the lack of empirical 
support for the PDR concept and the Navy’s lack of experience with and understanding 
of FPPS. If school performance data is either unavailable or infeasible for use, then 
questions regarding the appropriateness of the Bin model to estimate FPPS are 
irrelevant. As previously discussed, it will be necessary to reformulate the RIDE model 
in terms of some underlying concept other than PDR as an indicator of student over-
qualification. 

However, if it is determined that school performance data is available and feasible 
for use (and the FPPS criterion and original PDR concept is still considered valid), then 
the appropriateness of the Bin model for FPPS estimation purposes becomes an 
important issue. In particular, NPRST must then determine what FPPS estimation 
methodologies may be more appropriate and more accurate than the Bin procedure. The 
results in Table 1 strongly suggest that the LRM is superior to the Bin procedure, 
particularly when both bias and estimation error are taken into consideration. In 
addition, from a mathematical and software implementation standpoint, the LRM is no 
more complex than the Bin model. 
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Conclusions and Recommendations 

If classification policymakers desire that the nominal and effective weights of the 
RIDE components remain approximately equal, RIDE must be modified so that each 
component is standardized (by dividing by its standard deviation) before calculating the 
RIDE composite payoff. 

Assume that (1) classifiers using RIDE are not under any obligation to sell from the 
top of the optimal list and (2) unlike CLASP, there are no constraints on classifier access 
to the lower portions of the RIDE optimal list and it is equally convenient for him to sell 
a job from the bottom of the list as it is for him to sell one from the top. Then, the DIM 
concept is not required in the RIDE model because a classifier using RIDE has sufficient 
freedom to put the applicant into a job option with a low optimality value if quota fill 
and/or criticality requirements dictate that he do so. 

If “A” School performance data is unavailable or is determined to be infeasible for 
use in the RIDE parameter update (or the current PDR concept is considered invalid), 
then classification policymakers should consider the classifier decision model as a 
potential alternative for redefining the PDR concept and becoming the conceptual 
framework for the RIDE parameter update process. 

If school performance data is available and feasible for use in the RIDE parameter 
update, then classification policymakers should consider the LRM as a replacement for 
the Bin methodology. 
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Appendix A: 
Derivation of EATE Formula  
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Derivation of EATE Formula and Pseudo Code to Compare 
the Bin and LRM Models 
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Pseudo Code to compare the Bin and LRM models: 

Outer Loop over j = 1, 70 RIDE job options: 
 
Inner Loop over composite score Xi,j , where . Maxji CXCS ≤≤ ,

 `LRM Calculation:  Calculate LRM EATE for current value of Xi,j . 
        Assume Bias in Logit = 0, and Variance of logit is computed as follows: 
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bias = 0 and the logit variance into equation EATE to obtain the EATE of the logit  
( ( )( )jiXLEATE ,

ˆ   in LRM EATE formula): 
  
 Calculate EATE of LRM FPPS rate estimate (LRM EATE) for Xi,j by 
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 For current job option j, accumulate sum of LRM EATE over all Xi,j . 
 
  Bin Calculation:  Calculate EATE(Bin) = EATE of Bin model FPPS rate estimator: 
        For current X, compute Bin bias = difference between Stage I and Stage II 
                Models at the current value of Xi,j.  The stage I estimator is: 
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 The variance is derived by computing the variance of the stage I estimate, and using the 
 properties of the binomial distribution and the independence of the FPPS rates in the mth  and (m-
1)th bins. 
        For current X, calculate EATE(Bin) using the Bin bias and the stage I estimation error 
 variance and substituting them into equation EATE.   
        Accumulate sum of EATE(Bin) over all Xi,j

End Inner Loop (  loop). Maxji CXCS ≤≤ ,

For job option j, compute LRM_EATE = average of EATE(LRM) = mean EATE 
        of LRM FPPS rate estimates over all Xi,j  { Xi,j | Maxji CXCS ≤≤ ,  }. 
 
For job option j, compute Bin_EATE = average of EATE(Bin) = mean EATE 
        of Bin FPPS rate estimates over all Xi,j:  { Xi,j |  }.  Maxji CXCS ≤≤ ,

End Outer Loop (RIDE job option j loop). 

        Compute Overall_LRM_EATA = average of Expected AbsoluteTotal Error of LRM FPPS  rate 
estimates over all job options j and all Xi,j. 
 
        Compute Overall_Bin_EATA = average of Expected AbsoluteTotal Error of Bin FPPS rate 
 estimates over all job options j and all Xi,j. 
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Appendix B: 
Finding the QLRM Extreme Value Point  
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Finding the QLRM Extreme Value Point  

Show that QLRM has exactly one extreme value point and find it. Show that the extreme value 
point is a minimum if  and is a maximum if : The QLRM is given by: 0,2 >jα 0,2 <jα
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Appendix C: 
Use of P-value 
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Use of P-value 

In our testing situation, we set a null hypothesis for the QLRM and a null hypothesis 
for the LLRM. The QLRM null hypothesis is that the  coefficient in the QLRM is 
zero, while the LLRM null hypothesis states that the X coefficient in the LLRM is zero. 
Opposing each null hypothesis is the corresponding alternative hypothesis stating the 
coefficient is non-zero. For two-sided tests such as these, the p-value may be defined as 
the probability that the test statistic is at least as large in absolute value as the 
parameter estimate actually observed if the null hypothesis were true. Stated differently, 
the p-value represents the probability that the experimenter incorrectly rejects the null 
hypothesis on the basis of his observed parameter estimate. Thus, a small p-value 
implies small credibility for the null hypothesis and a large p-value implies large 
credibility for the null hypothesis. Hence, the p-value associated with the  coefficient 
estimate in the QLRM is a convenient way to measure the credibility of the QLRM null 
hypothesis, while, the p-value associated with the X coefficient estimate in the LLRM is 
a convenient way to measure the credibility of the LLRM null hypothesis (Wonnacott & 
Wonnacott, 1972). 

2X

2X

In logistic regression analysis, the test statistic is the square of the ratio of the 
parameter estimate and its standard estimation error. In our case, the LLRM null 
hypothesis states that the slope parameter in the LLRM is zero and, therefore, 
composite score is not useful in predicting FPPS. If the LLRM null hypothesis is false 
and the LLRM alternative hypothesis 0: 1,, ≠LLLRMAH β  is true, then composite score 

results in a statistically significant improvement in predicting FPPS. Under the null 
hypothesis, the square of the ratio of the estimated slope parameter divided by its 
standard estimation error has a chi-square distribution with 1 degree of freedom. An 
analogous argument shows that if the QLRM null hypothesis is rejected and the QLRM 
alternative hypothesis  is true, then we may conclude there is statistical 

evidence that an extreme value point (i.e., maximum or minimum) exists. 

0: 2,, ≠QQLRMAH α

 

C-1 



 



 

 

 

 

Appendix D: 
CLASP Aptitude/Difficulty Utility Function Features 
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Features of Aptitude/Difficulty Utility Function  

In Figure 3, UA/D(A,D) is plotted on the vertical axis against Job Difficulty D on the 
horizontal axis for fixed Aptitude values A = 40, 50, 60, 80, 90, and 99. Equation 
(Apt_Dif) indicates that this function is both a quadratic in A (for fixed D) and a 
quadratic in D (for fixed A). Each curve in Figure 3 represents UA/D(A,D) for a fixed A. 
Since each curve is a quadratic in D, it has exactly one maximum on the job difficulty 
interval between D=40 and D=99. The maximum, hereafter called , occurs at 

the difficulty level D that awards the largest utility score for the applicant whose 
aptitude is A.  may be obtained by setting the partial derivative of U

( )ADMax

( )ADMax A/D(A,D) 

with respect to D equal to zero, then solving for D: 
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, ,  
Table D-1 shows the  value associated with each Aptitude score between 40 

and 99, inclusive. One can verify that 

( )ADMax

( )ADMax  maximizes UA/D(A,D) for all D by 

observing that the 2nd partial derivative of U with respect to D is less than zero for 40 ≤  
A  99.   ≤

 
( )∂

∂

2

2 2 2
2

0 22 100 2 0
U
D

B A BA D/
, ,= − + <

 
In addition,  is monotonically increasing in A.  As demonstrated in Table D-1 

and mathematically below, both 

( )ADMax

( )ADMax  and UA/D(A, ( )ADMax ) are monotonically 

increasing in A. 

 Differentiating  
A

U DA

∂
∂ /  with respect to A, we obtain 

 
( ) ( ) ( )[ ]∂

∂
U

A
A B B D B DA D/

, , ,= − + − + −2 100 35 352 0 2 1 2 2

2

 

Since A-100 < 0, B2,0 < 0, B2,1 < 0, and B2,2 < 0, 
A

U DA

∂
∂ / > 0 for all A between 40 and 

99, inclusive, and for all D between 40 and 99, inclusive. Thus, for any given D, 
UA/D(A1,D) > UA/D(A2,D) if A1 > A2.  In particular, this is true for D = . ( )ADMax
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Table D-1 
DMax(A) value associated with each Aptitude score between 40 and 99 

Apt DMax(A) U(A,DMax(A) Apt DMax(A) U(A,DMax(A) 
40 43.1 33.1 70 65.7 55.6 
41 43.5 33.4 71 67.0 57.0 
42 43.9 33.8 72 68.4 58.4 
43 44.3 34.3 73 69.9 59.8 
44 44.8 34.7 74 71.4 61.4 
45 45.2 35.1 75 73.0 62.9 
46 45.7 35.6 76 74.6 64.6 
47 46.2 36.1 77 76.3 66.2 
48 46.7 36.6 78 78.0 68.0 
49 47.2 37.1 79 79.8 69.8 
50 47.8 37.7 80 81.6 71.6 
51 48.3 38.3 81 83.5 73.4 
52 48.9 38.9 82 85.4 75.3 
53 49.6 39.5 83 87.3 77.2 
54 50.2 40.2 84 89.2 79.2 
55 50.9 40.8 85 91.1 81.1 
56 51.6 41.5 86 93.1 83.0 
57 52.4 42.3 87 95.0 84.9 
58 53.2 43.1 88 96.8 86.8 
59 54.0 43.9 89 98.6 88.6 
60 54.8 44.7 90 100.4 90.4 
61 55.7 45.6 91 102.0 92.0 
62 56.6 46.6 92 103.6 93.6 
63 57.6 47.5 93 105.0 95.0 
64 58.6 48.5 94 106.3 96.3 
65 59.7 49.6 95 107.4 97.4 
66 60.8 50.7 96 108.3 98.3 
67 61.9 51.8 97 109.1 99.1 
68 63.1 53.0 98 109.6 99.6 
69 64.4 54.3 99 109.9 99.9 
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jθ

jθ

jθ jj NM σ+

jjM δ+

jjM δ+

Disentangling the SPSU and AFQT Components 

The Disentangle program looks at four alternative (theta) definitions and five 

alternative applicants.  is where AFQT utility reaches minimum (zero) after declining 

from its maximum. The alternative s are given by , where N = 1.0, 2.0, 3.0, 

and 3.5. is where AFQT utility begins to decline from its maximum value (100) 

toward its minimum value of zero. The Disentangle program always defines = 

jjM σ
2
1

+

jjj M

. 

In this example, we look at one applicant whose AFQT score is 90. N has been fixed 
at 3.5. Thus, σθ 5.3+=

jiS ,

jiS ,

jjM δ+

ji,

j

jiQ ,

jjM δ+ jθ

. The applicant qualified for all jobs (X ≥  CutS). On all jobs 

for which composite score X exceeded the PDR, was equal to 100 * Hardness factor 

(HF). Hence, applicant achieves highest possible  score on all these jobs. 

The applicant’s AFQT (90) was greater than  for all jobs, except NF and MM-

NF. Hence, applicant achieves highest possible Q  = 100 only on NF and MM-NF. The 

applicant’s AFQT (90) was greater than  only for SKS-SG and SM-SG. Hence, the 

applicant received the lowest possible (zero) on these 2 jobs. Other than MM-NF, 

NF, SKS-SG, and SM-SG, his AFQT was greater than  and was less than . 

Therefore, the applicant’s  on these jobs was between zero (the minimum) and 100 

(the maximum). 
jiQ ,

θ



 

 

                          Sch P/L Suc Util           AFQT Utility            AFQT Utility    RIDE Composite Utility 
                        Unsorted     Sorted           Unsorted                 Sorted        Unsorted     Sorted 
 r Rate    CutS  X    PDR    HF  Sir  Rate   Sir   Rate   M+Del  Theta  Qir  Rate  Qir     Rate   Cir   Rate   Cir 
 1 AB  GE  130  175  157.5  .12   12  STG GE   82  AB  GE   52.3   90.2    1  MM  NF 100    AB  GE   6  STG GE  83 
 2 AC  5Y  210  252  247.5  .59   59  FT  GE   82  AC  5Y   70.0  103.8   41      NF 100    AC  5Y  50  FT  GE  82 
 3 AD  SG  190  245  217.5  .33   33  CTT SG   82  AD  SG   56.8   95.6   14  CTI SG  98    AD  SG  24      NF  82 
 4 AE  SG  218  245  245.5  .69   69  HT  GE   79  AE  SG   76.2  109.0   58  ETS GE  85    AE  SG  63  EW  SG  80 
 5 AECFAE  218  245  265.5  .69   55  MT  AE   76  AECFAE   85.4  111.8   83  EW  SG  85    AECFAE  69  MM  NF  79 
 6 AG  SG  214  252  236.5  .64   64  EW  SG   76  AG  SG   71.6  107.7   49  STG GE  84    AG  SG  57  CTT SG  77 
 7 AK  SG  103  122  105.5  .54   54  JO  5Y   72  AK  SG   68.1  102.0   35  AECFAE  83    AK  SG  45  JO  5Y  76 
 8 AM  GE  164  175  181.5  .70   70  CTR SG   72  AM  GE   70.4  113.7   55  EA  5Y  83    AM  GE  62  CTM AE  73 
 9 AO  SG  190  245  217.5  .33   33  AM  GE   70  AO  SG   57.7   93.5   10  CTM AE  82    AO  SG  22  MT  AE  73 
10 AS  SG  200  252  202.5  .46   46  AE  SG   69  AS  SG   57.5   93.2    9  FT  GE  82    AS  SG  28  CTR SG  70 
11 AT  GE  156  182  193.5  .56   51  RM  SG   68  AT  GE   78.3  111.1   64  JO  5Y  80    AT  GE  57  CTI SG  70 
12 AZ  SG  103  122  125.5  .54   53  PN  SG   67  AZ  SG   68.2  103.7   39  EW  AE  79    AZ  SG  46  ETS GE  70 
13 BU  5Y  150  171  157.5  .46   46  CTM AE   64  BU  5Y   62.0  107.3   38  CTT SG  73    BU  5Y  42  EA  5Y  69 
14 CE  5Y  196  252  218.5  .41   41      NF   64  CE  5Y   59.5  101.7   28  MT  AE  71    CE  5Y  34  AECFAE  69 
............. 
44 MM  NF  242  245  332.5 1.00   57  UT  5Y   46  MM  NF   91.8  114.0  100  UT  5Y  36    MM  NF  79  OS  SG  42 
45 MMS SG  147  182  174.5  .41   41  EO  5Y   46  MMS SG   61.9   98.9   24  AK  SG  35    MMS SG  33  BU  5Y  42 
46 MN  SG  158  171  160.5  .60   60  SW  5Y   46  MN  SG   66.7  113.4   50  RP  SG  34    MN  SG  55  UT  5Y  41 
47 MR  SG  158  175  185.5  .60   55  AS  SG   46  MR  SG   66.4  109.3   45  SK  SG  33    MR  SG  50  YN  SG  41 
48 MS  SG   89  122  116.5  .18   18  HM  GE   44  MS  SG   53.6   93.8    9  EO  5Y  33    MS  SG  14  EN  AT  41 
49 MSS SG  147  182  164.5  .41   41  DT  GE   44  MSS SG   61.0   97.4   20  CE  5Y  28    MSS SG  31  CM  5Y  40 
50 MT  AE   57   64   69.5  .82   76  CTI SG   43  MT  AE   83.0  107.1   71  SW  5Y  28    MT  AE  73  EO  5Y  39 
51     NF  242  245  337.5 1.00   64  CM  5Y   43      NF   92.2  113.1  100  QM  SG  26        NF  82  SW  5Y  37 
52 OS  SG  157  183  174.5  .58   58  EM  SG   41  OS  SG   62.9   99.3   26  OS  SG  26    OS  SG  42  CE  5Y  34 
53 PH  5Y  103  122  115.5  .54   54  MMS SG   41  PH  5Y   70.8  108.7   49  EM  SG  25    PH  5Y  52  DT  GE  34 
54 PN  SG  108  122  120.5  .67   67  SM  SG   41  PN  SG   77.3  107.5   58  TM  SG  25    PN  SG  62  MMS SG  33 
55 PR  SG  158  171  170.5  .60   60  SS  SF   41  PR  SG   68.0  112.7   51  MMS SG  24    PR  SG  55  TM  SG  33 
56 QM  SG   97  122  119.5  .38   38  TM  SG   41  QM  SG   60.4  100.2   26  YNS SG  24    QM  SG  32  EM  SG  33 
57 RM  SG  163  183  170.5  .68   68  MSS SG   41  RM  SG   75.0  102.3   45  DT  GE  24    RM  SG  57  QM  SG  32 
58 RP  SG  160  179  162.5  .63   63  CE  5Y   41  RP  SG   57.6  106.7   34  SS  SF  21    RP  SG  49  SS  SF  31 
59 SH  SG   96  122  113.5  .36   36  STS GE   40  SH  SG   56.6   91.1    3  EN  SG  21    SH  SG  20  MSS SG  31 
......... 
61 SKS SG   41   59   43.5  .00    0  SH  SG   36  SKS SG   63.4   87.8    0  YN  SG  19    SKS SG   0  AS  SG  28 
62 SM  SG  147  183  159.5  .41   41  EN  AT   36  SM  SG   49.8   84.6    0  AD  SG  14    SM  SG  21  AD  SG  24 
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